Processing math: 100%

复杂环境下水泥环全生命周期密封完整性研究进展与展望

丁士东, 陆沛青, 郭印同, 李早元, 卢运虎, 周仕明

丁士东,陆沛青,郭印同,等. 复杂环境下水泥环全生命周期密封完整性研究进展与展望[J]. 石油钻探技术,2023, 51(4):104-113. DOI: 10.11911/syztjs.2023076
引用本文: 丁士东,陆沛青,郭印同,等. 复杂环境下水泥环全生命周期密封完整性研究进展与展望[J]. 石油钻探技术,2023, 51(4):104-113. DOI: 10.11911/syztjs.2023076
DING Shidong, LU Peiqing, GUO Yintong, et al. Progress and prospect on the study of full life cycle sealing integrity of cement sheath in complex environments [J]. Petroleum Drilling Techniques,2023, 51(4):104-113. DOI: 10.11911/syztjs.2023076
Citation: DING Shidong, LU Peiqing, GUO Yintong, et al. Progress and prospect on the study of full life cycle sealing integrity of cement sheath in complex environments [J]. Petroleum Drilling Techniques,2023, 51(4):104-113. DOI: 10.11911/syztjs.2023076

复杂环境下水泥环全生命周期密封完整性研究进展与展望

基金项目: 国家自然科学基金企业创新发展联合基金项目“复杂环境下水泥环全生命周期密封理论与控制方法”(编号:U22B6003)资助
详细信息
    作者简介:

    丁士东(1967—),男,江苏金湖人,1990年毕业于石油大学(华东)钻井工程专业,2007 年获中国石油大学(北京)油气井工程专业博士学位,正高级工程师,国家“百千万人才工程” 入选者,国家有突出贡献中青年专家,主要从事石油工程技术研究和相关管理工作。系本刊编委。E-mail:dingsd.sripe@sinopec.com。

  • 中图分类号: TE256+.9;TE26

Progress and Prospect on the Study of Full Life Cycle Sealing Integrity of Cement Sheath in Complex Environments

  • 摘要:

    受井下高温高压、酸性流体、固井后大规模分段压裂、油气开采等诸多因素影响,水泥环密封完整性极易遭受破坏,导致层间窜流、井口带压,甚至引发井喷。目前,以提高水泥环胶结质量为核心的水泥环密封控制技术,已无法满足复杂油气井长效开发需求,而随着深井、超深井与非常规油气井不断增多,未来面临的环境和工况更加复杂,对水泥环密封完整性的要求更高。为此,概述了复杂环境下水泥环全生命周期密封完整性研究进展,分析了目前水泥环密封完整性控制存在的主要问题,指出了未来应解决的基本理论和科学问题,并对未来相关技术进行了展望。研究认为,在持续研究高温高压环境下水泥水化及防窜理论、动载环境下水泥环密封失效规律、酸性环境下水泥石腐蚀机制的基础上,应突出全生命周期控制理念,解决“窜流、损伤、腐蚀”导致水泥环密封失效等关键科学问题,创新以水泥环密封完整性全生命周期监测技术和“防窜流、防损伤、防腐蚀”为核心的水泥环长效密封完整性控制技术,建立复杂环境下水泥环全生命周期密封理论与控制方法,支撑深层与非常规油气资源高效开发。

    Abstract:

    Influenced by many factors such as downhole high temperature and high pressure, acidic fluid, large-scale multi-stage fracturing after cementing, and oil and gas exploitation, the sealing integrity of the cement sheaths is vulnerable to damage, which leads to interlayer channeling, wellhead pressure, and even blowout. At present, the sealing control technology of cement sheaths centered on improving cement sheath cementation quality can no longer meet the demand for long-term development of complex oil and gas wells, and with the increasing number of deep wells, ultra-deep wells, and unconventional oil and gas wells, the environment and working conditions faced in the future will be even more complex, which will require even higher requirements for the sealing integrity of cement sheaths. To this end, the progress of research on the full life circle sealing integrity of cement sheaths in complex environments was reviewed, and the main problems existing in the sealing integrity control of cement sheaths were analyzed. The basic theoretical and scientific problems that should be solved in the future were pointed out, and related technologies were prospected. It is concluded that on the basis of continuous research on the theory of cement slurry hydration and anti-channeling in high-temperature and high-pressure environments, the failure law of cement sheath sealing in dynamic load environments, and the corrosion mechanism of cement stone in acidic environments, it is necessary to highlight the concept of full life cycle control and solve the key scientific problems such as “channeling, damage, and corrosion” leading to the failure of cement sheath sealing. It is also of great significance to innovate full life circle sealing integrity monitoring technology of cement sheaths and long-lasting sealing integrity control technology centered on “anti-channeling, anti-damage, and anti-corrosion” and establish the full life circle sealing theory and control method of cement sheaths in complex environments, so as to support the high-efficiency development of deep and unconventional oil and gas resources.

  • 川渝地区页岩层经历了强烈的后期改造,地质条件相对复杂,页岩分布不稳定,呈现较强的各向异性特征。对于页岩气的勘探开发,井壁取心技术是关键技术之一,页岩气水平井的水平段长达1 000~2 000 m,采用常规钻杆、连续油管难以将取心器准确下至取心位置,且钻井完井工作难度大、耗时长、费用高[1-2]。针对川渝地区页岩气水平井长水平段取心困难的问题,张宇奇[3]将井下爬行器与旋转式井壁取心器相结合,设计了一种具备爬行、定位、推靠、取心、储样和解卡等功能的旋转式井壁取心器,可完成水平井水平段、大位移定向井斜井段的取心作业;张朝界等人[4]用Solidworks软件模拟实际工况,建立了页岩气水平井和取心器的三维模型,利用ADAMS虚拟样机仿真技术,对取心器的爬行能力、过弯能力、负载能力和越障能力进行了模拟分析,结果表明均满足设计要求。

    爬行机构作为旋转式井壁取心器的直接驱动装置,其性能决定了取心器能否正常完成井下取心工作。1994年,J. Hallundbæk首先设计了Welltec轮式爬行器[5],Sondex公司对轮式爬行器进行了改进,采用了2个扶正机构[6];D. Bloom等人[7]研发了Maxtrac伸缩式爬行器,M. Buyers等人[8]对其进行了改进,可以蠕动前进。2001年,沈阳工业大学研制了管道爬行器;高进伟等人[9]根据平行四边形原理设计了爬行及定心装置,解决了爬行器在井下的轴向居中问题;周劲辉等人[10]研制了水平井自扶正式电缆爬行器;唐德威等人[11]研制了井下电机驱动爬行器。适用于水平井的爬行器以伸缩式爬行器和轮式爬行器为主,伸缩式爬行器的负载大,但爬行速度较慢;轮式爬行器的爬行速度快,但牵引力较小,仅能完成测井工具的运输,无法携带大段岩心,不适用于川渝地区页岩气水平井长水平段的取心工作。为此,笔者对传统爬行机构进行改进,采用行星齿轮、锥齿轮组合的传动方式,利用正交试验分析方法,分析各因素对支撑臂伸出速度和支撑臂推靠力的影响程度,并对主要结构尺寸进行了优化,降低了支撑臂所需要的推靠力,提高了支撑臂的伸出速度。

    取心器的爬行轮要求有足够的扭矩和正压力,以克服摩擦阻力、井下水平段及造斜段电缆拖拽力和井下流体阻力,而爬行轮的扭矩需要液压或电机来提供。由于整体尺寸的限制,要求爬行轮的转动速度及转矩较高,且因井下温升问题无法使用液压驱动来提供动力,只能用电机驱动爬行轮转动。为了满足取心直径要求,所选择电机的直径不能太大;考虑整个取心器系统需要地面提供电力,要求地面采用高压输电方式进行供电,相应地需要选择高压电机;由于尺寸控制,电机转速越高,电机尺寸越小。综合考虑,选择特制高速电机。

    取心器的前进动力由爬行轮提供,需要选择多种传动方式来实现电机与爬行轮之间的传动。行星齿轮减速器具有同轴向输出扭矩、轴向尺寸小和传动比大等特点,而且体积微小,可适用于精密仪器、电动装置、操作机构和取心器系统等设备;蜗轮蜗杆传动结构紧凑,单级传动比大,工作较稳定,但安装精度要求高,不适合用于爬行轮传动;带传动适用于高速传动,且安装时需要一定预紧力,无法在爬行轮传动过程中使用。因此,选择行星齿轮作为主要动力传动,搭配可以改变传动方向的锥齿轮,驱动电机的动力经过行星齿轮减速器、锥齿轮、链传动和行星爬行轮到达爬行轮,从而实现取心器的爬行功能。设计的爬行机构传动方案见图1

    图  1  爬行机构传动设计方案
    Figure  1.  Transmission design of the crawling mechanism

    爬行臂作为爬行机构的主要部件,一方面可以作为传动机架,把锥齿轮的动力通过链传动传递到爬行轮上;另一方面,爬行臂作为伸出部分,其末端装配爬行轮,与支撑臂相互配合,完成爬行轮的压紧工作。支撑臂作为支撑调节机构,对运动状态进行微调,达到取心器所需要的预压力。所以,二者作为爬行机构的主要部件,其结构尺寸和结构强度对整个机构的性能影响非常大。

    爬行臂和支撑臂的受力如图2所示(O为爬行臂铰接点,C为爬行轮中心)。

    图  2  爬行臂和支撑臂力学分析
    Figure  2.  Mechanical analysis of the crawling arm and supporting arm

    根据几何关系,可得[12]

    sinα=Dd2a (1)
    sinβ=Dd+2bsinα+2e2c (2)

    式中:D为井筒直径,mm;ab为爬行臂CA段和OC段的长度,爬行臂OA的长度为a+b,mm;c为支撑臂AB的长度,mm;d为爬行轮直径,mm;e为支撑臂铰接点与轴线的偏心距,mm;α为爬行臂转角,(°);β为支撑臂转角,(°)

    对爬行臂和支撑臂进行受力分析,可得平衡方程:

    {F0sinα+FBcosβ=FNF0cosα+FBsinβ=0 (3)

    式中:F0为爬行臂正压力,N;FB为支撑臂B点推靠力,N;FN为爬行轮所受正压力,N。

    由此,得到支撑臂和爬行臂的力矩公式为:

    {FNacosα(F0sinα+FAcosα)(a+b)sinα=0FAcsinαsinβFAccosαcosβ=0 (4)

    式中:FAA点的推靠力,N。

    由于支撑臂上A点和B点的力在各自方向上的分力大小相同、方向相反,联立式(3)和式(4)可得:

    {F0cosα=FAsinα=FBsinβFAcosα+F0sinα=FNFNacosα(a+b)FAsinα(cosαtanβ+sinα)=0 (5)

    则爬行轮所受摩擦力fP为:

    fP=μFN=μ(a+b)(tanα+tanβ)aFBsinβ (6)

    式中:μ为爬行器与井壁的摩擦系数,理论上可取0.5;fP为爬行轮所受摩擦力,N。

    取心器所需要的总推进力为6 000 N,爬行轮设计为2组,每组有3个爬行轮,则单个爬行轮所要达到的正压力为1 000 N。

    在液压缸推力的作用下滑块移动,推动支撑臂伸出,爬行臂绕O点旋转,带动爬行轮压靠在井壁上(见图3)。爬行机构的基本性能参数是爬行轮的正压力及其工作效率。工作效率主要取决于支撑臂的伸出速度,支撑臂的伸出速度由滑块位移决定,爬行臂长度a+b、支撑臂长度c、爬行臂转角α和偏心距e等因素都会对其产生影响。将这4个影响因素确定为优化变量,建立爬行机构的优化设计函数。

    图  3  爬行机构运动简图
    Figure  3.  Kinematic sketch of the crawling mechanism

    根据几何关系,可得:

    {s=sA+c2[(a+b)sinα+e]2s=(a+b)(a+b)cosα+ccosψe=csinψ (7)

    式中:sA为滑块位移,mm;s为滑块右死点距铰接点A的水平距离,mm;ψ为支撑臂初始转角,(°)。

    化简式(7),可得滑块位移sA的计算式:

    sA=ccosψc2[(a+b)sinα+e]2+(a+b)(1cosα) (8)

    式(8)对时间求导,可得支撑臂伸出速度vA的计算式:

    vA=(a+b)sinαe+[(a+b)sinα+e](a+b)cosαc2[(a+b)sinα+e]2 (9)

    式中:vA为支撑臂的伸出速度,mm/s

    根据式(6),可得爬行轮所受正压力FN为:

    FN=(a+b)(tanα+tanβ)aFBsinβ (10)

    根据几何关系及式(1)、式(2),可得:

    sinβ=(a+b)sinα+ec (11)
    tanβ=(a+b)sinα+ec2[(a+b)sinα+e]2 (12)

    将式(11)、式(12)代入式(10),可得到支撑臂推靠力FB

    FB=acFN(a+b)(tanα+(a+b)sinα+ec2[(a+b)sinα+e]2)[(a+b)sinα+e] (13)

    式(9)和式(13)即为爬行机构的多目标优化函数,利用正交试验分析法对其进行分析,可得到支撑臂及爬行臂有关参数的优化解。

    影响支撑臂伸出速度和推靠力的因素包括爬行臂长度a+b、支撑臂长度c、爬行臂转角α和偏心距e。已知爬行轮直径为60 mm,取心器适用于ϕ200.0 mm的水平井,可以确定各影响因素的参数水平(见表1)。

    表  1  正交试验各因素的水平
    Table  1.  Factor level of the orthogonal test
    水平因素
    a/mmb/mmc/mme/mmα/(°)
    1 7520100530
    2 8025115835
    31022813012 40
    41203014015 45
    下载: 导出CSV 
    | 显示表格

    根据表1设计的正交试验方案,共进行16次试验,结果见表2

    表  2  正交试验方案及结果
    Table  2.  Plan and results of the orthogonal test
    序号因素vA/
    (mm·s–1
    FB/N
    a/mmb/mmc/mme/mmα/(°)
    1 752010053043.0341 476.282
    2 752511583549.923948.763
    3 752813012 4054.784760.183
    4 753014015 4559.831613.171
    5 802011512 4559.442546.541
    6 8025100154053.611401.823
    7 802814053557.3921 244.544
    8 803013083047.4801 326.465
    91022013015 3555.684817.832
    101022514012 3052.0551 222.991
    1110228100845102.036 29.503
    121023011554080.807473.042
    131202014084082.741673.195
    141202513054598.571404.759
    151202811515 3060.058582.237
    161203010012 3578.109143.874
    下载: 导出CSV 
    | 显示表格

    为了确定上述各因素对试验指标的影响,将求解的指标进行极差计算,即可找出各因素的主次顺序及优化组合,结果见表3表4。正交试验各指标的平均值用kii=1,2,3,4)表示,其中i表示每个变量的因素水平顺序,将各指标平均值进行极差处理。极差R表示目标量变化的最大范围,可以用来表征不同变量对指标值的影响程度。指标值越大,此变量对目标函数的影响程度越大,需要重点考虑;指标值越小,此变量对目标函数的影响越小,可优先满足其他指标后再进行考虑[13-14]

    表  3  支撑臂伸出速度极差分析结果
    Table  3.  The extension speed range analysis of the supporting arm
    参数不同因素水平对应的支撑臂伸出速度vA /(mm·s–1
    abceα
    k151.79960.22569.19769.95150.657
    k254.48163.54062.55870.54560.277
    k372.64568.56864.13061.09867.985
    k479.87066.55763.00557.29679.970
    R28.071 8.343 6.63913.24929.313
    下载: 导出CSV 
    | 显示表格
    表  4  支撑臂推靠力极差分析结果
    Table  4.  The push-the-bit force range analysis of the supporting arm
    参数不同因素水平对应的支撑臂推靠力FB/N
    abceα
    k1949.550878.460512.870899.6501 151.990
    k2879.325744.580637.650744.480788.750
    k3635.830374.120827.310668.400577.040
    k4451.000638.910938.470603.750398.490
    R498.550504.340425.600295.900753.500
    下载: 导出CSV 
    | 显示表格

    根据多目标优化理论,对2个目标量vAFB进行分析,得出各因素的影响程度:各因素对目标函数vA的影响程度从大到小的顺序为αaebc;对目标函数FB的影响程度从大到小的顺序为αbace。比较2组目标函数的优化值,可首先确定αab的优化解分别为45°,120 mm和30 mm。通过比较影响程度的大小,得到e的优化解为8 mm,根据爬行臂长度确定c的优化解为140 mm。

    为了确定求得的优化解对爬行机构试验指标的影响,将优化解代入原目标函数,并与优化前各结构尺寸的试验指标进行对比,结果见表5

    表  5  优化前后试验指标对比
    Table  5.  Comparison between test indicators before and after optimization
    优化前后a/mmb/mmc/mme/mmα/(°)vA/(mm·s–1FB/N
    优化前 752010053043.0341 259.222
    802511583552.829893.596
    1022813012 4072.393554.946
    1203014015 4592.284339.869
    优化后1203014084599.060408.230
    下载: 导出CSV 
    | 显示表格

    表5可以看出,根据正交试验结果优选出的结构尺寸可以降低支撑臂所需推靠力,提高支撑臂伸出速度,说明可以使用正交试验方法优化爬行机构的结构尺寸,优化结果满足要求。

    根据爬行臂和支撑臂的优化设计结果,对爬行机构的各零部件进行设计、选型、强度校核和刚度校核,使用Solidworks软件对其进行建模和虚拟装配,得到了爬行机构的三维模型,如图4所示。

    图  4  爬行机构的三维模型
    Figure  4.  Three-dimensional model of the crawling mechanism

    1)根据页岩气井旋转式井壁取心器的工作要求,设计了一种由行星齿轮、锥齿轮组合传动的新型爬行机构,能够带动整个取心器行进。

    2)根据机械动力学原理,建立了爬行机构正压力、支撑臂伸出速度、支撑臂推靠力与爬行臂及支撑臂结构尺寸的函数方程。

    3)爬行臂转角对支撑臂伸出速度和推靠力影响最大。爬行臂转角优化后,可以降低支撑臂所需推靠力,提高支撑臂伸出速度,优化结果满足要求。

  • 图  1   典型水泥浆“液–固”态转化期的典型微观结构

    Figure  1.   Typical microstructure during the "liquid-solid" state transition of typical cement slurry

    图  2   高温循环载荷下的水泥石偏应力–应变曲线[17]

    Figure  2.   Stress-strain curve of cement stone under cyclic loading at high temperature

    图  3   防腐水泥浆体系设计思路

    Figure  3.   Design idea of anticorrosive cement slurry system

    图  4   用于修正测井方法的全尺寸固井水泥环模拟井群

    Figure  4.   Full-size cementing ring simulation of a well cluster for modified logging methods

  • [1] 曾义金. 中国石化深层超深层油气井固井技术新进展与发展建议[J/OL]. 石油钻探技术: 1–14. [2023-03-06]. http://kns.cnki.net/kcms/detail/11.1763.TE.20230302.1624.002.html.

    ZENG Yijin. New progresses and development suggestions of cementing technology on deep and ultra-deep wells of Sinopec[J/OL]. Petroleum Drilling Techniques: 1–14. [2023-03-06]. http://kns.cnki.net/kcms/detail/11.1763.TE.20230302.1624.002.html.

    [2] 路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10.

    LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1–10.

    [3] 程小伟,刘开强,李早元,等. 油井水泥浆液–固态演变的结构与性能[J]. 石油学报,2016,37(10):1287–1292.

    CHENG Xiaowei, LIU Kaiqiang, LI Zaoyuan, et al. Structure and properties of oil well cement slurry during liquid-solid transition[J]. Acta Petrolei Sinica, 2016, 37(10): 1287–1292.

    [4]

    OUELLET S, BUSSIÈRE B, AUBERTIN M, et al. Microstructural evolution of cemented paste backfill: Mercury intrusion porosimetry test results[J]. Cement and Concrete Research, 2007, 37(12): 1654–1665. doi: 10.1016/j.cemconres.2007.08.016

    [5]

    DE BELIE N, KRATKY J, VAN VLIERBERGHE S. Influence of pozzolans and slag on the microstructure of partially carbonated cement paste by means of water vapour and nitrogen sorption experiments and BET calculations[J]. Cement and Concrete Research, 2010, 40(12): 1723–1733. doi: 10.1016/j.cemconres.2010.08.014

    [6]

    THOMAS J J, BIERNACKI J J, BULLARD J W, et al. Modeling and simulation of cement hydration kinetics and microstructure development[J]. Cement and Concrete Research, 2011, 41(12): 1257–1278. doi: 10.1016/j.cemconres.2010.10.004

    [7]

    SCHERER G W, FUNKHOUSER G P, PEETHAMPARAN S. Effect of pressure on early hydration of class H and white cement[J]. Cement and Concrete Research, 2010, 40(6): 845–850. doi: 10.1016/j.cemconres.2010.01.013

    [8]

    ZHOU Desheng, WOJTANOWICZ A K. New model of pressure reduction to annulus during primary cementing[R]. SPE 59137, 2000.

    [9] 丁士东. 固井后环空气窜预测新方法[J]. 钻井液与完井液,2003,20(6):30–33. doi: 10.3969/j.issn.1001-5620.2003.06.009

    DING Shidong. New predicating method of annular channeling after cementing[J]. Drilling Fluid & Completion Fluid, 2003, 20(6): 30–33. doi: 10.3969/j.issn.1001-5620.2003.06.009

    [10]

    LI Zichang, VANDENBOSSCHE J M, IANNACCHIONE A T, et al. Theory-based review of limitations with static gel strength in cement/matrix characterization[J]. SPE Drilling & Completion, 2016, 31(2): 145–158.

    [11] 陆沛青,桑来玉,谢少艾,等. 苯丙胶乳水泥浆防气窜效果与失重规律分析[J]. 石油钻探技术,2019,47(1):52–58. doi: 10.11911/syztjs.2018141

    LU Peiqing, SANG Laiyu, XIE Shaoai, et al. Analysis of the anti-gas channeling effect and weight loss law of styrene-acrylic latex cement slurry[J]. Petroleum Drilling Techniques, 2019, 47(1): 52–58. doi: 10.11911/syztjs.2018141

    [12] 孙坤忠,陶谦,周仕明,等. 丁山区块深层页岩气水平井固井技术[J]. 石油钻探技术,2015,43(3):55–60.

    SUN Kunzhong, TAO Qian, ZHOU Shiming, et al. Cementing technology for deep shale gas horizontal well in the Dingshan Block[J]. Petroleum Drilling Techniques, 2015, 43(3): 55–60.

    [13] 齐奉忠,杨成颉,刘子帅. 提高复杂油气井固井质量技术研究:保证水泥环长期密封性的技术措施[J]. 石油科技论坛,2013,32(1):19–22.

    QI Fengzhong, YANG Chengjie, LIU Zishuai. Improve cementing quality of complicated oil and gas wells-ensure long-term sealing performance of cement sheath[J]. Petroleum Science and Technology Forum, 2013, 32(1): 19–22.

    [14] 李明,邓双,严平,等. 纤维/晶须材料对固井水泥石的增韧机理研究[J]. 西南石油大学学报(自然科学版),2016,38(5):151–156.

    LI Ming, DENG Shuang, YAN Ping, et al. Research on the toughening mechanism of fiber/whisker on oil well cement stone[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(5): 151–156.

    [15] 刘昱亮,李早元,薛元陶,等. 固井水性环氧树脂水泥石力学性能研究[J]. 硅酸盐通报,2019,38(2):339–343.

    LIU Yuliang, LI Zaoyuan, XUE Yuantao, et al. Study on mechanical properties of cementing waterborne epoxy cement[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2): 339–343.

    [16] 郑友志,徐冰青,蒲军宏,等. 固井水泥体系在不同条件下的力学行为规律[J]. 天然气工业,2017,37(1):119–123.

    ZHENG Youzhi, XU Bingqing, PU Junhong, et al. Mechanical behaviors of cement systems in different conditions[J]. Natural Gas Industry, 2017, 37(1): 119–123.

    [17] 王磊,曾义金,张青庆,等. 高温环境下油井水泥石力学性能试验[J]. 中国石油大学学报(自然科学版),2018,42(6):88–95.

    WANG Lei, ZENG Yijin, ZHANG Qingqing, et al. Experimental study on mechanical properties of oil well cement under high temperature[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(6): 88–95.

    [18] 李军,陈勉,柳贡慧,等. 套管、水泥环及井壁围岩组合体的弹塑性分析[J]. 石油学报,2005,26(6):99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023

    LI Jun, CHEN Mian, LIU Gonghui, et al. Elastic-plastic analysis of casing-concrete sheath-rock combination[J]. Acta Petrolei Sinica, 2005, 26(6): 99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023

    [19] 席岩,李军,陶谦,等. 循环载荷作用下微环隙的产生及演变[J]. 断块油气田,2020,27(4):522–527.

    XI Yan, LI Jun, TAO Qian, et al. Emergence and evolution of micro-annulus under cyclic loading[J]. Fault-Block Oil & Gas Field, 2020, 27(4): 522–527.

    [20]

    ZHOU Shiming, LIU Rengguang, ZENG Hao, et al. Mechanical characteristics of well cement under cyclic loading and its influence on the integrity of shale gas wellbores[J]. Fuel, 2019, 250: 132–143. doi: 10.1016/j.fuel.2019.03.131

    [21] 顾军,高兴原,刘洪. 油气井固井二界面封固系统及其破坏模型[J]. 天然气工业,2006,26(7):74–76.

    GU Jun, GAO Xingyuan, LIU Hong. Two-interface isolation system of oil/gas well cementing and its damage model[J]. Natural Gas Industry, 2006, 26(7): 74–76.

    [22] 郭辛阳,步玉环,李娟,等. 变温条件下泥饼对二界面胶结强度的影响[J]. 钻井液与完井液,2010,27(1):55–57. doi: 10.3969/j.issn.1001-5620.2010.01.018

    GUO Xinyang, BU Yuhuan, LI Juan, et al. The effect of mud cake on the bond strength of the second interface under varied temperatures[J]. Drilling Fluid & Completion Fluid, 2010, 27(1): 55–57. doi: 10.3969/j.issn.1001-5620.2010.01.018

    [23] 顾军,杨卫华,秦文政,等. 固井二界面封隔能力评价方法研究[J]. 石油学报,2008,29(3):451–454.

    GU Jun, YANG Weihua, QIN Wenzheng, et al. Evaluation method for isolation ability of cement-formation interface[J]. Acta Petrolei Sinica, 2008, 29(3): 451–454.

    [24] 郭辛阳,沈忠厚,步玉环,等. 固井微环空成因研究进展及解决方法[J]. 钻采工艺,2009,32(5):1–3.

    GUO Xinyang, SHEN Zhonghou, BU Yuhuan, et al. Research development of cementing microannular and its solving methods[J]. Drilling & Production Technology, 2009, 32(5): 1–3.

    [25]

    OPEDAL N, TODOROVIC J, TORSÆTER M, et al. Experimental study on the cement-formation bonding[R]. SPE 168138, 2014.

    [26]

    LI Zaoyuan, GU Tao, GUO Xiaoyang, et al. Characterization of the unidirectional corrosion of oilwell cement exposed to H2S under high-sulfur gas reservoir conditions[J]. RSC Advances, 2015, 5(87): 71529–71536. doi: 10.1039/C5RA12481F

    [27] 郭小阳,辜涛,李早元,等. 水湿环境下硫化氢对固井水泥石的腐蚀机理[J]. 天然气工业,2015,35(10):93–98. doi: 10.3787/j.issn.1000-0976.2015.10.012

    GUO Xiaoyang, GU Tao, LI Zaoyuan, et al. Corrosion mechanism of hydrogen sulfide on well cement under water wet environments[J]. Natural Gas Industry, 2015, 35(10): 93–98. doi: 10.3787/j.issn.1000-0976.2015.10.012

    [28]

    VENHUIS M A, REARDON E J. Vacuum method for carbonation of cementitious wasteforms[J]. Environmental Science & Technology, 2001, 35(20): 4120–4125.

    [29]

    XU Bihua, YUAN Bin, WANG Yongqing, et al. H2S-CO2 mixture corrosion-resistant Fe2O3-amended wellbore cement for sour gas storage and production wells[J]. Construction and Building Materials, 2018, 188: 161–169. doi: 10.1016/j.conbuildmat.2018.08.120

    [30]

    CHENG Xiaowei, MEI Kaiyuan, LI Zaoyuan, et al. Research on the interface structure during unidirectional corrosion for oil-well cement in H2S based on computed tomography technology[J]. Industrial & Engineering Chemistry Research, 2016, 55(41): 10889–10895.

    [31]

    LIN Yuanhua, ZHU Dajiang, ZENG Dezhi, et al. Experimental studies on corrosion of cement in CO2 injection wells under supercritical conditions[J]. Corrosion Science, 2013, 74: 13–21. doi: 10.1016/j.corsci.2013.03.018

    [32]

    SAUKI A B, IRAWAN S. Effects of pressure and temperature on well cement degradation by supercritical CO2[J]. International Journal of Engineering & Technology, 2010, 10(4): 53–61.

    [33] 田辉,郭辛阳,宋雨媛,等. 基于化学热力学的耐二氧化碳腐蚀水泥水化产物控制[J]. 钻采工艺,2021,44(2):86–89.

    TIAN Hui, GUO Xinyang, SONG Yuyuan, et al. Control of hydration products of CO2 resistant cements based on chemical thermodynamics[J]. Drilling & Production Technology, 2021, 44(2): 86–89.

    [34] 张聪,张景富,乔宏宇,等. CO2腐蚀油井水泥石的深度及其对性能的影响[J]. 钻井液与完井液,2010,27(6):49–51.

    ZHANG Cong, ZHANG Jingfu, QIAO Hongyu, et al. Corrosive depth and effect on oil well cement stone by CO2[J]. Drilling Fluid & Completion Fluid, 2010, 27(6): 49–51.

    [35]

    ZHA Xiaoxiong, NING Jiaqian, SAAFI M, et al. Effect of supercritical carbonation on the strength and heavy metal retention of cement-solidified fly ash[J]. Cement and Concrete Research, 2019, 120: 36–45. doi: 10.1016/j.cemconres.2019.03.005

    [36]

    CHEN Ziyu, LIN Junlin, SAGOE-CRENTSIL K, et al. Development of hybrid machine learning-based carbonation models with weighting function[J]. Construction and Building Materials, 2022, 321: 126359. doi: 10.1016/j.conbuildmat.2022.126359

    [37]

    ZHANG Jian, WANG Changning, PENG Zhigang. Corrosion integrity of oil cement modified by environment responsive microspheres for CO2 geologic sequestration wells[J]. Cement and Concrete Research, 2021, 143: 106397. doi: 10.1016/j.cemconres.2021.106397

    [38]

    ZHANG Bojian, ZOU Changjun, PENG Zhigang, et al. Study on the preparation and anti-CO2 corrosion performance of soap-free latex for oil well cement[J]. ACS Omega, 2020, 5(36): 23028–23038. doi: 10.1021/acsomega.0c02729

    [39] 谢荣华,刘继生,李晓伟. 固井质量评价技术发展及其对油田开发的影响[J]. 测井技术,2019,43(4):339–343.

    XIE Ronghua, LIU Jisheng, LI Xiaowei. Cementing quality evaluation technology and its influence on oilfield development[J]. Well Logging Technology, 2019, 43(4): 339–343.

    [40] 侯振永,郝晓良,马焕英,等. 超声固井质量评价方法改进及应用[J]. 测井技术,2019,43(6):657–660.

    HOU Zhenyong, HAO Xiaoliang, MA Huanying, et al. Improvement and application of the quality evaluation method for UIL cement bond[J]. Well Logging Technology, 2019, 43(6): 657–660.

    [41]

    JULIAN J Y, KING G E, CISMOSKI D A, et al. Downhole leak determination using fiber-optic distributed-temperature surveys at Prudhoe Bay, Alaska[R]. SPE 107070, 2007.

    [42]

    NOBLE L, REES H, LANGNES T, et al. Using distributed fibre optic sensing to recover well integrity and restore production[R]. SPE 204450, 2021.

    [43]

    LI X, PARKER T, FARHADIROUSHAN M, et al. Evaluating a concept of using distributed optical fiber temperature and strain sensor for continuous monitoring of casing and completion mechanical deformation in intelligent wells[R]. OTC 16285, 2004.

    [44]

    SUN Yankun, XUE Ziqiu, PARK H, et al. Optical sensing of CO2 geological storage using distributed fiber-optic sensor: From laboratory to field-scale demonstrations[J]. Energy & Fuels, 2021, 35(1): 659–669.

    [45] 钱杰,沈泽俊,张卫平,等. 中国智能完井技术发展的机遇与挑战[J]. 石油地质与工程,2009,23(2):76–79.

    QIAN Jie, SHEN Zejun, ZHANG Weiping, et al. Opportunity and challenge of intelligent completion technique in China[J]. Petroleum Geology and Engineering, 2009, 23(2): 76–79.

    [46] 张华礼,谢南星,李少兵,等. 气井永置式井下压力温度监测技术及其应用展望[J]. 钻采工艺,2015,28(1):53–55.

    ZHANG Huali, XIE Nanxing, LI Shaobing, et al. The permanent downhole pressure & temperature monitoring technology in gas well[J]. Drilling & Production Technology, 2015, 28(1): 53–55.

    [47] 吴天乾,宋文宇,谭凌方,等. 超低密度水泥固井质量评价方法[J]. 石油钻探技术,2022,50(1):65–70.

    WU Tianqian, SONG Wenyu, TAN Lingfang, et al. Evaluation method for cementing quality of ultra-low-density cement[J]. Petroleum Drilling Techniques, 2022, 50(1): 65–70.

    [48] 何汉平. 基于多因素耦合的井筒完整性风险评价[J]. 中国安全生产科学技术,2017,13(7):168–172.

    HE Hanping. Risk evaluation of wellbore integrity based on multi-factor coupling[J]. Journal of Safety Science and Technology, 2017, 13(7): 168–172.

    [49] 赵效锋,管志川,廖华林,等. 水泥环力学完整性系统化评价方法[J]. 中国石油大学学报(自然科学版),2014,38(4):87–92.

    ZHAO Xiaofeng, GUAN Zhichuan, LIAO Hualin, et al. Systemic evaluation method of cement mechanical integrity[J]. Journal of China University of Petroleum(Edition of Natural Science), 2014, 38(4): 87–92.

    [50] 何龙. 元坝气田钻井工程井筒完整性设计与管理[J]. 钻采工艺,2016,39(2):6–8.

    HE Long. Wellbore integrity design and management during the developing of Yuanba sour gas reservoir[J]. Drilling & Production Technology, 2016, 39(2): 6–8.

    [51]

    COOKE C E, Jr, KLUCK M P, MEDRANO R. Field measurements of annular pressure and temperature during primary cementing[J]. Journal of Petroleum Technology, 1983, 35(8): 1429–1438. doi: 10.2118/11206-PA

    [52] 陈超,王龙,李鹏飞,等. SN井区抗高温液硅–胶乳防气窜水泥浆[J]. 钻井液与完井液,2016,33(5):88–91.

    CHEN Chao, WANG Long, LI Pengfei, et al. HTHP anti-channeling liquid silica latex cement slurry used in Block SN[J]. Drilling Fluid & Completion Fluid, 2016, 33(5): 88–91.

    [53] 罗俊丰,张伟国,廖易波,等. 新型抗高温聚合物/胶乳防气窜水泥浆体系在南海流花深水区块的应用[J]. 石油钻采工艺,2015,37(1):115–118.

    LUO Junfeng, ZHANG Weiguo, LIAO Yibo, et al. Application of new high-temperature resistant polymer/latex anti-gas channeling cement slurry system in Liuhua deepwater block of the South China Sea[J]. Oil Drilling & Production Technology, 2015, 37(1): 115–118.

    [54] 王涛, 申峰, 展转盈, 等. 页岩气小井眼水平井纳米增韧水泥浆固井技术[J]. 石油钻探技术, 2023, 51(3): 51-57.

    WANG Tao, SHEN Feng, ZHAN Zhuanying, et al. Cementing technology of nano toughened cement slurry for shale gas slim hole horizontal wells[J]. Petroleum Drilling Techniques, 2023, 51(3): 51-57.

    [55] 邹双,冯明慧,张天意,等. 多尺度纤维韧性水泥浆体系研究与应用[J]. 石油钻探技术,2020,48(6):40–46. doi: 10.11911/syztjs.2020084

    ZOU Shuang, FENG Minghui, ZHANG Tianyi, et al. Research and application of tough cement slurry systems with multi-scale fiber[J]. Petroleum Drilling Techniques, 2020, 48(6): 40–46. doi: 10.11911/syztjs.2020084

    [56] 李斐. 抗高温弹韧性水泥浆体系优化研究[J]. 钻井液与完井液,2021,38(5):623–627.

    LI Fei. Study on optimization of high temperature cement slurry with elasticity and toughness[J]. Drilling Fluid & Completion Fluid, 2021, 38(5): 623–627.

    [57] 李成嵩,李社坤,范明涛,等. 高密度弹韧性水泥浆力学数值模拟[J]. 钻井液与完井液,2023,40(2):233–240.

    LI Chengsong, LI Shekun, FAN Mingtao, et al. Numerical simulation study on mechanics of high density elastic and tough cement slurries[J]. Drilling Fluid & Completion Fluid, 2023, 40(2): 233–240.

    [58] 徐小峰,宋巍,杨燕,等. 页岩储层水平井固井水泥浆体系应用研究进展[J]. 科学技术与工程,2023,23(17):7161–7173. doi: 10.12404/j.issn.1671-1815.2023.23.17.07161

    XU Xiaofeng, SONG Wei, YANG Yan, et al. Research progress in application of cement slurry system for horizontal well in shale reservoir[J]. Science Technology and Engineering, 2023, 23(17): 7161–7173. doi: 10.12404/j.issn.1671-1815.2023.23.17.07161

    [59] 何吉标,彭小平,刘俊君,等. 抗高交变载荷水泥浆的研制及其在涪陵页岩气井的应用[J]. 石油钻探技术,2020,48(3):35–40. doi: 10.11911/syztjs.2020054

    HE Jibiao, PENG Xiaoping, LIU Junjun,et al. Development of an anti-deformation cement slurry under alternative loading and its application in Fuling shale gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 35–40. doi: 10.11911/syztjs.2020054

图(4)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  162
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 修回日期:  2023-06-20
  • 网络出版日期:  2023-07-05
  • 刊出日期:  2023-08-24

目录

/

返回文章
返回