留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑多因素的固井二界面胶结抗拉强度室内评价方法

杨春和 王磊 曾义金 郭印同 杨广国 刘奎

杨春和,王磊,曾义金,等. 考虑多因素的固井二界面胶结抗拉强度室内评价方法[J]. 石油钻探技术,2023, 51(4):48-54 doi: 10.11911/syztjs.2023041
引用本文: 杨春和,王磊,曾义金,等. 考虑多因素的固井二界面胶结抗拉强度室内评价方法[J]. 石油钻探技术,2023, 51(4):48-54 doi: 10.11911/syztjs.2023041
YANG Chunhe, WANG Lei, ZENG Yijin, et al. A laboratory method for evaluating the bonding tensile strength of the cement–formation interface considering multiple factors [J]. Petroleum Drilling Techniques,2023, 51(4):48-54 doi: 10.11911/syztjs.2023041
Citation: YANG Chunhe, WANG Lei, ZENG Yijin, et al. A laboratory method for evaluating the bonding tensile strength of the cement–formation interface considering multiple factors [J]. Petroleum Drilling Techniques,2023, 51(4):48-54 doi: 10.11911/syztjs.2023041

考虑多因素的固井二界面胶结抗拉强度室内评价方法

doi: 10.11911/syztjs.2023041
基金项目: 国家自然科学基金项目“高强压裂交变荷载下深部页岩储层固井二界面密封失效机理研究”(编号:52104010)和“复杂环境下水泥环全生命周期密封理论与控制方法”(编号:U22B6003)、中国石化科技攻关项目“深层页岩气井固井水泥环失效机理与密封性评价方法研究”(编号:P21056)联合资助
详细信息
    作者简介:

    杨春和(1962—),男,江西丰城人,1983年毕业于江西冶金学院地质工程专业,1986年获中国科学院武汉岩土力学研究所地质工程专业硕士学位,1999年获美国内华达大学地质工程专业博士学位,研究员,中国工程院院士,主要从事盐岩水溶法建腔与油气地下储备的理论和技术研究。系本刊编委。E-mail: chyang@whrsm.ac.cn

  • 中图分类号: TE256+.9

A Laboratory Method for Evaluating the Bonding Tensile Strength of the Cement–Formation Interface Considering Multiple Factors

  • 摘要:

    受井壁表面粗糙度、钻井液残留和温压扰动等因素的影响,固井二界面是整个环空封隔的最薄弱环节,且极易发生张拉破坏导致环空密封失效,但已有的评价方法只能获得固井二界面的胶结剪切强度,不能很好地评价固井二界面抗拉破裂性能。为此,考虑岩性、界面粗糙度、钻井液残留、冲洗液清洗和水泥浆等主要因素,建立了一种固井二界面胶结抗拉强度室内评价方法,从冲洗效率、胶结细观结构、抗拉强度、破裂形貌等多个维度对固井二界面胶结抗拉性能进行了系统评价。研究结果表明,该评价方法科学合理、步骤清晰、简单适用、试验结果离散性小,不同因素下测试结果区分度好,进一步完善了固井二界面胶结强度评价方法,具有较高的推广应用价值。

     

  • 图 1  试样中部界面的受力状态

    Figure 1.  Stress state of middle interface of rock sample

    图 2  岩样表面粗糙度设置

    Figure 2.  Roughness setting of rock surface

    图 3  制备完成的部分典型组合体试样

    Figure 3.  Some prepared typical rock-cement compositespecimens

    图 4  岩石–水泥石界面胶结细观结构

    Figure 4.  Meso-structure of the rock-cement interfaces

    图 5  岩性对岩石–水泥石界面抗拉强度的影响

    Figure 5.  Influence of lithology on the tensile strength of rock-cement interface

    图 6  界面粗糙度对岩石–水泥石界面抗拉强度的影响

    Figure 6.  Influence of surface roughness on the tensile strength of rock-cement interface

    图 7  界面清洁度对岩石–水泥石界面抗拉强度的影响

    Figure 7.  Influence of surface cleanliness on the tensile strength of rock-cement interface

    图 8  水泥浆对岩石–水泥石界面抗拉强度的影响

    Figure 8.  Influence of cement slurry on the tensile strength of rock-cement interface

    图 9  岩石–水泥石界面张拉破裂形貌

    Figure 9.  Tensile fracture morphology of rock-cement interface

    表  1  试验方案设计

    Table  1.   Experimental scheme design

    岩性界面粗糙度/mm界面清洁度水泥浆试样编号
    页岩0.2新鲜界面3%弹韧性水泥浆T3-YT-1-0-1,2,3
    钻井液+冲洗液+清水T3-YT-1-1-1,2,3
    钻井液+清水T3-YT-1-2-1,2,3
    0钻井液+冲洗液+清水T3-YT-0-1-1,2,3
    1.0T3-YT-2-1-1,2,3
    0.2钻井液+冲洗液+清水6%弹韧性水泥浆T6-YT-1-1-1,2,3
    9%弹韧性水泥浆T9-YT-1-1-1,2,3
    常规水泥浆C-YT-1-1-1,2,3
    树脂水泥浆S-YT-1-1-1,2,3
    砂岩0.2钻井液+冲洗液+清水3%弹韧性水泥浆T3-ST-1-1-1,2,3
    注:常规水泥浆的配方为水泥+4.00%降滤失剂+0.25%消泡剂+40.00%清水;3%,6%和9%弹韧性水泥浆的配方为水泥+3.00%/6.00%/9.00%弹性材料+3.00%降滤失剂+10.00%液硅+0.25%消泡剂+33.00%清水;树脂水泥浆的配方为水泥+5.00%树脂+4.00%降滤失剂+35.00%清水+0.25%消泡剂。
    下载: 导出CSV

    表  2  不同岩性岩样的力学参数

    Table  2.   Mechanical parameters of rock sample with different lithology

    岩性单轴抗压
    强度/MPa
    弹性模量/
    GPa
    泊松比巴西劈裂抗拉
    强度/MPa
    渗透率/
    mD
    页岩98.524.100.2013.00.000 21
    砂岩41.26.230.134.40.760 00
    下载: 导出CSV
  • [1] 陈平. 钻井与完井工程[M]. 北京: 石油工业出版社, 2011.

    CHEN Ping. Drilling and completion engineering [M]. Beijing: Petroleum Industry Press, 2011.
    [2] 孙坤忠,陶谦,周仕明,等. 丁山区块深层页岩气水平井固井技术[J]. 石油钻探技术,2015,43(3):55–60.

    SUN Kunzhong, TAO Qian, ZHOU Shiming, et al. Cementing technology for deep shale gas horizontal well in the Dingshan Block[J]. Petroleum Drilling Techniques, 2015, 43(3): 55–60.
    [3] 王磊,曾义金,张青庆,等. 高温环境下油井水泥石力学性能试验[J]. 中国石油大学学报(自然科学版),2018,42(6):88–95.

    WANG Lei, ZENG Yijin, ZHANG Qingqing, et al. Experimental study on mechanical properties of oil well cement under high temperature[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(6): 88–95.
    [4] 曾义金. 干热岩热能开发技术进展与思考[J]. 石油钻探技术,2015,43(2):1–7.

    ZENG Yijin. Technical process and thinking for development of hot dry rock (HDR) geothermal resources[J]. Petroleum Drilling Techniques, 2015, 43(2): 1–7.
    [5] 王培义,马鹏鹏,张贤印,等. 中低温地热井钻井完井工艺技术研究与实践[J]. 石油钻探技术,2017,45(4):27–33.

    WANG Peiyi, MA Pengpeng, ZHANG Yinxian, et al. Drilling and completion technologies for geothermal wells with medium and low temperatures[J]. Petroleum Drilling Techniques, 2017, 45(4): 27–33.
    [6] 杨春和,王同涛. 深地储能研究进展[J]. 岩石力学与工程学报,2022,41(9):1729–1759.

    YANG Chunhe, WANG Tongtao. Advance in deep underground energy storage[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(9): 1729–1759.
    [7] HE Tao, WANG Tongtao, SHAN Baodong, et al. Fatigue damage of wellbore cement sheath in gas storage salt cavern under alternating internal pressure[J]. Rock Mechanics and Rock Engineering, 2022, 55: 715–732. doi: 10.1007/s00603-021-02686-7
    [8] 顾军,高兴原,刘洪. 油气井固井二界面封固系统及其破坏模型[J]. 天然气工业,2006,26(7):74–76.

    GU Jun, GAO Xingyuan, LIU Hong. Two interface isolation system of oil/gas well cementing and its damage model[J]. Natural Gas Industry, 2006, 26(7): 74–76.
    [9] 顾军,高德利,石凤歧,等. 论固井二界面封固系统及其重要性[J]. 钻井液与完井液,2005,22(2):7–10. doi: 10.3969/j.issn.1001-5620.2005.02.003

    GU Jun, GAO Deli, SHI Fengqi, et al. The two contacts cementing system in cementing job and its importance[J]. Drilling Fluid & Completion Fluid, 2005, 22(2): 7–10. doi: 10.3969/j.issn.1001-5620.2005.02.003
    [10] 郭辛阳,沈忠厚,步玉环,等. 固井微环空成因研究进展及解决方法[J]. 钻采工艺,2009,32(5):1–3.

    GUO Xinyang, SHEN Zhonghou, BU Yuhuan, et al. Research development of cementing microannular and its solving methods[J]. Drilling & Production Technology, 2009, 32(5): 1–3.
    [11] 崔茂荣,马勇. 评价钻井液滤饼对固井二界面胶结质量影响的新方法[J]. 天然气工业,2006,26(12):92–93,96.

    CUI Maorong, MA Yong. A new method for evaluating the effects of drilling fluid filter cake on bond quality of the second cementing interface[J]. Natural Gas Industry, 2006, 26(12): 92–93,96.
    [12] 郭辛阳,步玉环,李娟,等. 变温条件下泥饼对二界面胶结强度的影响[J]. 钻井液与完井液,2010,27(1):55–57.

    GUO Xinyang, BU Yuhuan, LI Juan, et al. The effect of mud cake on the bond strength of the second interface under varied temperatures[J]. Drilling Fluid & Completion Fluid, 2010, 27(1): 55–57.
    [13] PLANK J, TIEMEYER C, BUELICHEN D, et al. A study of cement/mudcake/formation interfaces and their impact on the sealing quality of oilwell cement[R]. SPE 170452, 2014.
    [14] 徐璧华,卢翔,谢应权. 高温高压下油井水泥环胶结强度测试新方法[J]. 天然气工业,2016,36(11):65–69. doi: 10.3787/j.issn.1000-0976.2016.11.008

    XU Bihua, LU Xiang, XIE Yingquan. A new bonding strength measurement method for oil well cement sheath under high temperatures and high pressures[J]. Natural Gas Industry, 2016, 36(11): 65–69. doi: 10.3787/j.issn.1000-0976.2016.11.008
    [15] 柳华杰,步玉环,梁岩,等. 环空扰动固井二界面胶结性能评价装置及方法[J]. 实验室研究与探索,2020,39(7):78–83. doi: 10.3969/j.issn.1006-7167.2020.07.017

    LIU Huajie, BU Yuhuan, LIANG Yan, et al. Device and method for evaluating the cementation property of cement-formation interface under disturbance[J]. Research and Exploration in Laboratory, 2020, 39(7): 78–83. doi: 10.3969/j.issn.1006-7167.2020.07.017
    [16] 杨振杰,姜晓强,吴志强,等. 固井水泥环完整性模拟评价实验仪研究[J]. 钻井液与完井液,2013,30(6):9–12. doi: 10.3969/j.issn.1001-5620.2013.06.003

    YANG Zhenjie, JIANG Xiaoqiang, WU Zhiqiang, et al. Research on simulation evaluation instrument of the integrity of cement sheath[J]. Drilling Fluid & Completion Fluid, 2013, 30(6): 9–12. doi: 10.3969/j.issn.1001-5620.2013.06.003
    [17] MAAGI M, PIN G, JUN G. Influence of nano-TiO2 on the wellbore shear bond strength at cement-formation interface[J]. Upstream Oil and Gas Technology, 2020(5): 100016.
    [18] OPEDAL N, TODOROVIC J, TORSAETER M, et al. Experimental study on the cement-formation bonding[R]. SPE 168138, 2014.
    [19] BOIS A R, GAMIER A, RODOT F, et al. How to prevent loss of zonal isolation through a comprehensive analysis of microannulus formation[R]. SPE 124719, 2011.
    [20] SHENOLD C, TEODORIU C. Development of a structured workflow for enhanced well cement integrity: Lessons learned and the way ahead[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 824–836. doi: 10.1016/j.jngse.2016.10.042
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  134
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-15
  • 修回日期:  2023-02-13
  • 网络出版日期:  2023-03-09

目录

    /

    返回文章
    返回