石油工程跨界融合技术创新态势研究与建议

王敏生, 闫娜, 光新军

王敏生,闫娜,光新军. 石油工程跨界融合技术创新态势研究与建议[J]. 石油钻探技术,2023, 51(4):95-103. DOI: 10.11911/syztjs.2023026
引用本文: 王敏生,闫娜,光新军. 石油工程跨界融合技术创新态势研究与建议[J]. 石油钻探技术,2023, 51(4):95-103. DOI: 10.11911/syztjs.2023026
WANG Minsheng, YAN Na, GUANG Xinjun. Research and suggestions on cross-border syncretisation innovation of petroleum engineering technologies [J]. Petroleum Drilling Techniques,2023, 51(4):95-103. DOI: 10.11911/syztjs.2023026
Citation: WANG Minsheng, YAN Na, GUANG Xinjun. Research and suggestions on cross-border syncretisation innovation of petroleum engineering technologies [J]. Petroleum Drilling Techniques,2023, 51(4):95-103. DOI: 10.11911/syztjs.2023026

石油工程跨界融合技术创新态势研究与建议

基金项目: 中国石化科技攻关项目“面向2035年的油气开发工程前沿技术战略研究”(编号:P20031)资助
详细信息
    作者简介:

    王敏生(1973—),男,河南信阳人,1995 年毕业于江汉石油学院钻井工程专业,2009年获中国石油大学(华东)油气井工程专业博士学位,正高级工程师,主要从事油气井工程及石油工程战略规划方面的研究与管理工作。系本刊主编。E-mail: wangms.sripe@sinopec.com

  • 中图分类号: F416.22

Research and Suggestions on Cross-Border Syncretisation Innovation of Petroleum Engineering Technologies

  • 摘要:

    为顺应技术融合的趋势,推动石油工程技术快速高效发展,追踪研究了近十年石油工程跨界融合技术创新举措,认为石油工程跨界融合技术创新主要包括跨界科研联盟与技术合作、风险投资、技术集成创新、技术收并购等。跨界融合技术创新推动油田服务企业的经营环境日益透明、运作模式更加灵活、作业方式和程序不断优化、施工性能指标不断提升、适用范围不断拓宽,油田服务的内涵也愈发丰富。基于跨界融合技术创新对石油工程技术的影响,提出了4项石油工程跨界融合技术创新的发展建议,包括提升外部技术扫描能力,强化外部连接能力,打造共生创新生态,注重T型人才的培养和聚集等。研究结果与建议对加快推进石油工程跨界融合技术发展具有重要意义。

    Abstract:

    In order to follow the trend of technological syncretization and promote the rapid and efficient development of petroleum engineering technologies, measures for cross-border syncretization innovation of petroleum engineering technologies in the past ten years were studied. It is believed that the cross-border syncretization innovation of petroleum engineering technologies mainly includes cross-border scientific research alliance and technological cooperation, venture capital, technological syncretization innovation, technological merger and acquisition, etc. The operating environment of oilfield service enterprises is increasingly transparent, and the operation mode is more flexible. The operation mode and procedure are constantly optimized, and the construction performance index is constantly improved. Furthermore, the scope of application is constantly expanded, and the connotation of oilfield service is increasingly enriched. According to the influence of cross-border syncretization innovation on petroleum engineering technologies, four development suggestions on cross-border syncretization innovation of petroleum engineering technologies were put forward, including improving the ability to scan external technologies, strengthening the external connection ability, creating a symbiotic innovation ecology, and focusing on the cultivation and aggregation of talents with T-shaped knowledge structures. The results and suggestions are of great significance to accelerate the development of cross-border syncretization of petroleum engineering technologies.

  • 图  1   斯伦贝谢一体化钻井技术的构成

    Figure  1.   Composition of Schlumberger’s integrated drilling technology

    图  2   哈里伯顿AMI的构成

    Figure  2.   Composition of Halliburton’s AMI model

    图  3   纳米复合材料可溶解小球溶解过程

    Figure  3.   Dissolution process of soluble nanocomposite pellets

    图  4   RDS公司的钻台机器人自动钻井系统

    Figure  4.   RDS’s automatic drilling system of derrick floor robots

    图  5   卸垛机器人

    Figure  5.   Destacking robot

  • [1] 李健,余悦. 合作网络结构洞、知识网络凝聚性与探索式创新绩效:基于我国汽车产业的实证研究[J]. 南开管理评论,2018,21(6):121–130.

    LI Jian, YU Yue. Structural holes in collaboration network, cohesion of knowledge network and exploratory innovation performance: an empirical study on the Chinese automakers[J]. Nankai Business Review, 2018, 21(6): 121–130.

    [2] 刘臣,单伟,于晶. 组织内部知识共享的类型及进化博弈模型[J]. 科研管理,2014,35(2):145–153. doi: 10.3969/j.issn.1000-2995.2014.02.018

    LIU Chen, SHAN Wei, YU Jing. Type and evolutionarygame model of knowledge sharing within organizations[J]. Science Research Management, 2014, 35(2): 145–153. doi: 10.3969/j.issn.1000-2995.2014.02.018

    [3] 滕延秀. 产业跨界融合理论综述[J]. 中小企业管理与科技,2022(15):132–134.

    TENG Yanxiu. Summary of industrial cross-border integration theory[J]. Management & Technology of SME, 2022(15): 132–134.

    [4] 李东红,陈昱蓉,周平录. 破解颠覆性技术创新的跨界网络治理路径:基于百度Apollo自动驾驶开放平台的案例研究[J]. 管理世界,2021,37(4):130–159. doi: 10.3969/j.issn.1002-5502.2021.04.011

    LI Donghong, CHEN Yurong, ZHOU Pinglu. Paths of cross-boundary network governance in introducing disruptive technological innovation: the case of Baidu Apollo autonomous driving open platform[J]. Journal of Management World, 2021, 37(4): 130–159. doi: 10.3969/j.issn.1002-5502.2021.04.011

    [5]

    BATHELT H, MALMBERG A, MASKELL P. Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation[J]. Progress in Human Geography, 2004, 28(1): 31–56. doi: 10.1191/0309132504ph469oa

    [6] 章长城,任浩. 企业跨界创新:概念、特征与关键成功因素[J]. 科技进步与对策,2018,35(21):154–160.

    ZHANG Changcheng, REN Hao. Cross-boundary innovation: concept, characters and key successful factors[J]. Science & Technology Progress and Policy, 2018, 35(21): 154–160.

    [7]

    ROSENBERG N. Technological change in the machine tool industry, 1840-1910[J]. The Journal of Economic History, 1963, 23(4): 414–443. doi: 10.1017/S0022050700109155

    [8] 刘辉. 跨界创新理论研究与现实分析: 基于中国创新路径的探讨[D]. 成都: 电子科技大学, 2020.

    LIU Hui. Theoretical research and practical analysis of cross-border innovation: discussion on China’s innovation path[D]. Chengdu: University of Electronic Science and Technology of China, 2020.

    [9] 吕建中,杨虹,孙乃达. 全球能源转型背景下的油气行业技术创新管理新动向[J]. 石油科技论坛,2019,38(4):1–8. doi: 10.3969/j.issn.1002-302x.2019.04.001

    LYU Jianzhong, YANG Hong, SUN Naida. New orientation of oil and gas industrial technology innovation management against background of global energy transformation[J]. Petroleum Science and Technology Forum, 2019, 38(4): 1–8. doi: 10.3969/j.issn.1002-302x.2019.04.001

    [10] 闫娜,王敏生,张大军. 世界石油工程技术研发管理动向及启示[J]. 石油科技论坛,2018,37(2):56–63. doi: 10.3969/j.issn.1002-302x.2018.02.011

    YAN Na, WANG Minsheng, ZHANG Dajun. Trend and enlightenment for global petroleum engineering R&D management[J]. Petroleum Science and Technology Forum, 2018, 37(2): 56–63. doi: 10.3969/j.issn.1002-302x.2018.02.011

    [11] 闫娜,王敏生,李文博. 法国斯伦贝谢商业模式创新实践及启示[J]. 对外经贸实务,2017(6):22–25. doi: 10.3969/j.issn.1003-5559.2017.06.005

    YAN Na, WANG Minsheng, LI Wenbo. Practice and enlightenment of business model innovation in Schlumberger[J]. Practice in Foreign Economic Relations and Trade, 2017(6): 22–25. doi: 10.3969/j.issn.1003-5559.2017.06.005

    [12]

    de WARDT J, WYLIE R, LAING M, et al. History, disruptors and future of changing well construction business models[R]. SPE 208776, 2022.

    [13]

    Forbes. How blockchain is helping big oil optimize for a carbon friendly future[EB/OL].https://jpt.spe.org/how-blockchain-is-helping-big-oil-optimize-for-a-carbon-friendly-future. [EB/OL]. (2021-02-04)[2022-03-12]. www.oilsns.com/article/410129.

    [14] 陈春花, 赵海然. 共生: 未来企业组织进化路径[M]. 北京: 中信出版集团股份有限公司, 2018.

    CHEN Chunhua, ZHAO Hairan. Symbiosis: the evolution path of enterprise organization in the future[M]. Beijing: CITIC Press Group, 2018.

    [15]

    LIOU J. Depalletizing robot automates mud-mixing process[J/OL]. (2013-09-14) [2022-03-12].https://drillingcontractor.org/depalletizing-robot-automates-mud-mixing-process-25986.

    [16]

    Baker Hughes. We are taking energy forward[EB/OL]. [2022-03-12].https://www.bakerhughes.com/sites/bakerhughes/files/2021 − 01/Baker%20Hughes%20-%20The%20path%20to%20net-zero%20and%20a%20sustainable%20energy%20future_0.pdf.

    [17]

    GUPTA I, TRAN N, DEVEGOWDA D, et al. Looking ahead of the bit using surface drilling and petrophysical data: Machine-learning-based real-time geosteering in Volve Field[J]. SPE Journal, 2020, 25(2): 990–1006. doi: 10.2118/199882-PA

    [18]

    NOSHI C I. Application of data science and machine learning algorithms for ROP optimization in West Texas: turning data into knowledge[R]. OTC-29288-MS, 2019.

    [19]

    UNRAU S, TORRIONE P. Adaptive real-time machine learning-based alarm system for influx and loss detection[R]. SPE 187155, 2017.

    [20] 高科,李梦,董博,等. 仿生耦合聚晶金刚石复合片钻头[J]. 石油勘探与开发,2014,41(4):485–489. doi: 10.11698/PED.2014.04.15

    GAO Ke, LI Meng, DONG Bo, et al. Bionic coupling polycrystalline diamond composite bit[J]. Petroleum Exploration and Development, 2014, 41(4): 485–489. doi: 10.11698/PED.2014.04.15

    [21] 徐良,孙友宏,李治文,等. 仿生孕镶金刚石钻头在山东玲珑金矿的试验[J]. 地质与勘探,2008,44(4):79–82.

    XU Liang, SUN Youhong, LI Zhiwen, et al. Experiment of bionics impregnated diamond bit in the Linglong gold mine, Shandong Province[J]. Geology and Exploration, 2008, 44(4): 79–82.

    [22] 徐良,孙友宏,高科. 仿生孕镶金刚石钻头高效碎岩机理[J]. 吉林大学学报(地球科学版),2008,38(6):1015–1019. doi: 10.13278/j.cnki.jjuese.2008.06.018

    XU Liang, SUN Youhong, GAO Ke, et al. Efficient rock fragmentation mechanism analysis of impregnated diamond bionics bit[J]. Journal of Jilin University(Earth Science Edition), 2008, 38(6): 1015–1019. doi: 10.13278/j.cnki.jjuese.2008.06.018

    [23] 佚名. 石油行业的黑科技有多牛? 惠及航空航天、医疗、新能源……[EB/OL]. (2019-07-11)[2022-03-12]. www. oilsns. com/article/410129.

    Anon. How good is the black technology in the oil industry? Benefits to aerospace, medical and new energy[EB/OL]. (2019-07-11)[2022-03-12]. www. oilsns. com/article/410129.

    [24]

    AHMEED A, ELKATATNY S, ABDULRAHEEM A, et al. Prediction of lost circulation zones using support vector machine and radial basis function[R]. IPTC-19628-MS, 2020.

    [25]

    AL-HAMEEDI A T, ALKINANI H H, DUNN-NORMAN S, et al. Using machine learning to predict lost circulation in the Rumaila Field, Iraq[R]. SPE 191933, 2018.

    [26]

    MANSOUR A, EZEAKACHA C, TALEGHANI A D, et al. Smart lost circulation materials for productive zones[R]. SPE 187099, 2017.

    [27]

    MANSOUR A K, TALEGHANI A D, LI G Q. Smart lost circulation materials for wellbore strengthening[R]. ARMA-2017-0492, 2017.

    [28]

    LEE J. High-temperature target[J]. Offshore Engineer, 2017, 42(5): 78–79.

    [29]

    CHAKRABORTY S, DIGIOVANNI A A, AGRAWAL G, et al. Graphene-coated diamond particles and compositions and intermediate structures comprising same: US 9103173 B2[P]. 2015 − 08 − 11.

    [30]

    KESHAVAN M K, ZHANG Youhe, SHEN Yuelin, et al. Polycrystalline diamond materials having improved abrasion resistance, thermal stability and impact resistance: US 8309050 B2[P]. 2012-11-13.

    [31]

    GRAY A. Enabling autonomous inspection technology solutions to transform IMR operations[EB/OL]. (2018-08-12)[2022-03-12].https://www.subseauk.com/documents/documents2018/i-tech%20-%20alan%20gray%20-%20subsea%20expo%202019.pdf.

    [32]

    SRINIVASAN H, MENON V, AL HAMDAN M, et al. Quantify and commit to sustainability[R]. IPTC-22456-EA, 2022.

    [33] 王敏生. 油气井钻完井作业碳减排发展方向与建议[J]. 石油钻探技术,2022,50(6):1–6. doi: 10.11911/syztjs.2022106

    WANG Minsheng. Development direction and suggestions for carbon emission reduction during drilling and completion[J]. Petroleum Drilling Techniques, 2022, 50(6): 1–6. doi: 10.11911/syztjs.2022106

    [34] 王敏生, 光新军, 闫娜, 等. 石油工程跨界融合技术创新[M]. 北京: 科学出版社, 2022: 233−234.

    WANG Minsheng, GUANG Xinjun, YAN Na, et al. Cross-border syncretisation innovation of petroleum engineering technologies[M]. Beijing: Science Press, 2022: 233−234.

  • 期刊类型引用(4)

    1. 赵建军,张文平,朱玉杰. 滑套定位器有限元结构分析与试验. 机械设计与制造. 2021(04): 108-111 . 百度学术
    2. 仲冠宇,左罗,蒋廷学,王海涛,李双明,宋维强. 页岩气井超临界二氧化碳压裂起裂压力预测. 断块油气田. 2020(06): 710-714 . 百度学术
    3. 王根柱,刘杨,张力中,臧孝宇. 滑套压裂理论介绍及端口优选实验研究. 化工管理. 2019(17): 146-148 . 百度学术
    4. 江龙,程远方,周东现,王怀栋,李梦来,张怀文. 水平井固井滑套结构对起裂压力影响规律分析. 科学技术与工程. 2016(36): 6-12 . 百度学术

    其他类型引用(1)

图(5)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  134
  • PDF下载量:  94
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-01-14
  • 修回日期:  2023-02-22
  • 录用日期:  2023-03-08
  • 网络出版日期:  2023-03-09
  • 刊出日期:  2023-08-24

目录

    /

    返回文章
    返回