Study on Key Factors Influencing the ROP Improvement of PDC Bits
-
摘要:
为了在钻井工程中发挥出PDC钻头的最大功效,通过理论分析、室内试验、案例分析、现场试验等,探讨了高钻压、高转速等钻井参数强化对PDC钻头钻速和磨损的影响规律,同时分析了PDC钻头的磨损机理与过早失效主因。研究结果表明:1)钻压是影响PDC钻头机械钻速的直接和首选因素,当钻头处于高效破岩状态时,无论钻遇一般地层还是硬岩地层,钻压与机械钻速均应呈线性关系;钻遇均质硬岩地层时,建议将200 kN以上高钻压纳入PDC钻头的常规应用参数;2)提高转速可实现钻井提速,虽然高转速会加剧PDC钻头的磨损,但目前切削齿的质量足以满足PDC钻头在高转速(400~500 r/min)下长时间钻进多数地层的需求;3)布齿密度对钻头机械钻速有影响,但并非直接因素,只要“吃得进去,切得下来,排得及时”三者建立动态平衡,即便是高布齿密度PDC钻头也可以实现优快钻进;4)PDC钻头破岩效率越高,钻头磨损会越小,如提高钻压,会增大切削齿吃入深度、减少钻头磨损;5)动态冲击和低效破岩是造成PDC切削齿和钻头过早失效的主因,实现PDC钻头高效钻进的核心是提高破岩效率与抑制钻头振动。该研究结果对PDC钻头合理使用与钻井提速技术创新具有参考意义。
Abstract:For the maximization of the efficacy of the polycrystalline diamond compact (PDC) bits in drilling engineering, comprehensive research, including theoretical analysis, laboratory test, case study, and on-site trials, was conducted to investigate how a high weight-on-bit (WOB), a high rotary speed, and other optimized drilling parameters work on the rate of penetration (ROP) and the wear of a PDC bit. Furthermore, the wear mechanism of the PDC bit and the primary cause of the premature failure of the bit were analyzed. The results indicated that: 1) The ROP of the PDC bit was directly and primarily affected by the WOB. When the bit was in an efficient rock-breaking state, the WOB was invariably in a linear relationship with the ROP whether the formation encountered was a conventional one or a hard rock formation. Adding a high WOB over 200 kN into the normal pressurization range of the PDC bit was recommended if the formation encountered was a homogeneous hard rock formation. 2) ROP improvement could be achieved by enhancing the rotary speed. Although the wear of the PDC bit could be aggravated by a high rotary speed, the requirement on a PDC bit to penetrate most formations for a long time at a high rotary speed (400–500 r/min) could be readily met by the quality of the currently available PDC cutter. 3) The ROP of the bit was also affected by cutter density, but not in a direct manner. As long as a dynamic balance among “capabilities to bite into the formation, cut the rock, and evacuate the cuttings in time” was reached, the optimized fast drilling could be achieved even by a PDC bit with a high cutter density. 4) The wear of the PDC bit was less severe under the higher rock-breaking efficiency of the bit. The WOB could be enhanced to improve the ROP and reduce bit wear. 5) Dynamic impact and inefficient rock-breaking were considered the primary causes of the premature failure of the PDC cutter and bit. The key for the PDC bit to achieve efficient penetration was improving rock-breaking efficiency and restraining bit vibration. The above results could be used as a reference for the proper utilization of PDC bits and the innovation of ROP improvement technologies.
-
表 1 VTL试验参数
Table 1. Vertical turning lathe (VTL) test parameters
试验
编号每圈吃入
深度/mm总的行进
距离/m切削深度/
mm线速度/
(m·min−1)#1 0.5 68 097 60 100 #2 1.0 34 049 #3 1.5 22 699 #4 2.0 17 024 #5 2.5 13 619 #6 3.0 11 350 #7 1.0 34 049 60 20 #8 34 049 60 #9 34 049 100 #10 34 049 140 表 2 高速螺杆与常规螺杆参数对比
Table 2. Parameter comparison between high-speed motor and conventional motor
螺杆类型 钻压/kN 工作排量/
(L·min−1)输出扭矩/(N·m) 顶驱转速 /
(r·min−1)钻头转速 /
(r·min−1)ϕ172.0 mm高速螺杆 60~100 2200 8869 60~80 380~400 ϕ172.0 mm常规螺杆 60~150 2200 12750 60~80 220~240 表 3 玛南风城组不同钻具组合的钻井指标
Table 3. Drilling performances of various bottom-hole assemblies in Fengcheng Formation on southern slope of Mahu Sag
试验井 钻头 井下动力钻具 单趟平均进尺/m 平均机械钻速/(m·h−1) 井型 完钻时间 JL53井 牙轮钻头、PDC钻头、复合钻头 <50 <1.3 直井 2020年 JL56井 异形齿PDC钻头 常规螺杆 88 2.0 直井 2020年 MH48井 孕镶钻头 涡轮 193 1.8 直井 2020年 MN520井 PDC钻头 旋导 86 1.2 水平井造斜段 2021年 PDC钻头 高速螺杆 578 4.8 水平井水平段 MN272井 PDC钻头 高速螺杆 1008 8.2 水平井水平段 2022年 表 4 胜利油田常规钻井参数与强化钻井参数对比
Table 4. Comparison of conventional and enhanced drilling parameters in Shengli Oilfield
钻井参数类型 钻压/kN 顶驱转速 /(r·min−1) 排量/(L·s−1) 泵压/MPa 提速工具 常规钻井参数 40~80 70 40 15 螺杆 强化钻井参数 100~120 70~80 >70 >20 大扭矩螺杆 表 5 美国FORGE 78B-32井TKC83型PDC钻头钻井指标
Table 5. Drilling data of TKC83 PDC bit in FORGE Well 78B-32
趟钻数 钻头直径/mm 入井井深/m 进尺/m 平均机械钻速/(m·h−1) 钻压/kN 顶驱转速/(r·min−1) 排量/(L·s−1) 钻遇岩性 7 269.9 1 112.8 643.1 20.4 295 40.0 51.7 花岗闪长岩 9 269.9 1 774.2 267.9 22.3 295 50.0 50.5 花岗闪长岩 13 269.9 2 055.0 265.5 21.2 295 45.0 52.4 花岗闪长岩 14 269.9 2 320.5 270.4 22.5 295 50.0 52.4 花岗闪长岩 -
[1] TEALE R. The concept of specific energy in rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1965, 2(1): 57–73. [2] IADC Drilling Manual. Mechanics and performance[M]. 12th ed. Houston: International Association of Drilling Contractors, 2014. [3] DUPRIEST F E, KOEDERITZ W L. Maximizing drill rates with real-time surveillance of mechanical specific energy[R]. SPE 92194, 2005. [4] DUPRIEST F E, WITT J W, REMMERT S M. Maximizing ROP with real-time analysis of digital data and MSE[R]. IPTC 10607, 2005. [5] DUPRIEST F E. Comprehensive drill-rate management process to maximize rate of penetration[R]. SPE 102210, 2006. [6] DUPRIEST F E, NOYNAERT S, CUNNINGHAM T, et al. Maximizing drilling performance through the Delaware Basin brushy canyon and interbedded formations[R]. SPE 199599, 2020. [7] DUPRIEST F, PASTUSEK P, LAI S, et al. Standardization of mechanical specific energy equations and nomenclature[R]. SPE 208777, 2022. [8] WATSON W, DUPRIEST F, WITT-DOERRING Y, et al. IADC code upgrade: data collection and workflow required to conduct bit forensics and create effective changes in practices or design[R]. SPE 208712, 2022. [9] DUPRIEST F, NOYNAERT S. Drilling practices and workflows for geothermal operations[R]. SPE 208798, 2022. [10] K&M Technology Group. Pre-tour with K&M technology group-limiter identification and redesign with Fred Dupriest[EB/OL]. (2021-01-22)[2022-12-01].https://www.youtube.com/watch?v=tiBrMF0TBdg. [11] SUGIURA J, LOPEZ R, BORJAS F, et al. Oil and gas drilling optimization technologies applied successfully to unconventional geothermal well drilling[R]. SPE 205965, 2021. [12] Energy and Geoscience Institute at the University of Utah. Utah FORGE: Well 16A(78)-32 drilling data[DB/OL]. (2021-01-08) [2022-12-01].https://doi.org/10.15121/1776602. [13] Energy and Geoscience Institute at the University of Utah. Utah FORGE Well 78B-32 daily drilling reports and logs[DB/OL]. (2021-08-09) [2022-12-01].https://doi.org/10.15121/1814488. [14] WATSON W, DUPRIEST F, WITT-DOERRING Y, et al. IADC code upgrade: bit and BHA forensics using rig-based photographic documentation practices[R]. SPE 208707, 2022. [15] PASTUSEK P. Limiter redesign processTM bit and BHA foren-sics[EB/OL]. (2021-03-28)[2022-12-01].https://www.youtube.com/watch?v=3MLBAAh21nk. [16] SELF J, STEVENSON M, ROBERTS T, et al. Fixed cutter bit & cutter technology set new performance standards for geothermal drilling[J]. GRC Transactions, 2021, 45: 826–846. [17] HELLVIK S, NYGAARD R, HOEL E, et al. PDC cutter and bit development for challenging conglomerate drilling in the Luno Field-offshore Norway[R]. SPE 151456, 2012. [18] CURRY D, PESSIER R, SPENCER R, et al. Assuring efficient PDC drilling[R]. SPE 184676, 2017. [19] RAJABOV V, MISKA S, MORTIMER L, et al. The effects of back rake and side rake angles on mechanical specific energy of single PDC cutters with selected rocks at varying depth of cuts and confining pressures[R]. SPE 151406, 2012. [20] ZHOU Yaneng, LIN J S. On the critical failure mode transition depth for rock cutting[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 131–137. doi: 10.1016/j.ijrmms.2013.05.004 [21] 张端瑞,文涛,蒲磊,等. “垂直钻井工具+等壁厚螺杆”提速钻具组合先导性试验:以库车山前高陡构造克深A井为例[J]. 石油钻采工艺,2020,42(6):684–690.ZHANG Duanrui, WEN Tao, PU Lei, et al. Pilot test on the ROP-improvement BHA of vertical drilling tool & screw rod with equal wall thickness: a case study on Well Keshen A in the high-steep structure of Kuqa piedmont area[J]. Oil Drilling & Production Technology, 2020, 42(6): 684–690. [22] 康健,郝围围,刘德智,等. 高陡含砾地层大扭矩螺杆+高效PDC钻头钻井提速分析[J]. 西部探矿工程,2021,33(5):71–75. doi: 10.3969/j.issn.1004-5716.2021.05.024KANG Jian, HAO Weiwei, LIU Dezhi, et al. ROP optimization using high torque motor+high efficiency PDC bits in the high and steep structure gravel formation[J]. West-China Exploration Engineering, 2021, 33(5): 71–75. doi: 10.3969/j.issn.1004-5716.2021.05.024 [23] MAJIDI R, MISKA S Z, TAMMINENI S. PDC single cutter: the effects of depth of cut and RPM under simulated borehole conditions[J]. Wiertnictwo, Nafta, Gaz, 2011, 28(1/2): 283–295. [24] AKBARI B, MISKA S Z. Relative significance of multiple parameters on the mechanical specific energy and frictional responses of polycrystalline diamond compact cutters[J]. Journal of Energy Resources Technology, 2017, 139(2): 022904. doi: 10.1115/1.4034291 [25] 张学光. 哈山3井石炭系钻井提速探索与实践[J]. 内蒙古石油化工,2013,39(20):38–40.ZHANG Xueguang. The exploration and practice of carboniferous ROP enhancement in Hassan 3 Well[J]. Inner Mongolia Petrochemical Industry, 2013, 39(20): 38–40. [26] 秦文政,邱锦,王富建,等. 克拉玛依油田一区石炭系火成岩钻井技术研究[J]. 西部探矿工程,2020,32(6):100–102. doi: 10.3969/j.issn.1004-5716.2020.06.034QIN Wenzheng, QIU Jin, WANG Fujian, et al. Study on the drilling technology of carboniferous volcanic reservoir in Block 1 of Karamay Oilfield[J]. West-China Exploration Engineering, 2020, 32(6): 100–102. doi: 10.3969/j.issn.1004-5716.2020.06.034 [27] SEALE R, CONROY D. PDC bits run on turbodrills: The history, facts and current developments[R]. SPE 94826, 2005. [28] 成海,郑卫建,夏彬,等. 国内外涡轮钻具钻井技术及其发展趋势[J]. 石油矿场机械,2008,37(4):28–31. doi: 10.3969/j.issn.1001-3482.2008.04.007CHENG Hai, ZHENG Weijian, XIA Bin, et al. The development trend of turbodrilling technology[J]. Oil Field Equipment, 2008, 37(4): 28–31. doi: 10.3969/j.issn.1001-3482.2008.04.007 [29] 谭春飞. 深井超深井涡轮钻具复合钻井提高钻速技术研究[D]. 北京: 中国地质大学(北京), 2012.TAN Chunfei. The ROP technical research on turbo-drill composite drilling in deep & ultra-deep well[D]. Beijing: China University of Geosciences (Beijing), 2012. [30] KUYKEN C W, ELKASRAWY M E, AL BREIKI A M S, et al. High performance drilling onshore Abu Dhabi[R]. SPE 202142, 2021. [31] SHAO Fangyuan, LIU Wei, GAO Deli, et al. Development and verification of triple-ridge-shaped cutter for PDC bits[J]. SPE Journal, 2022, 27(6): 3849–3863. doi: 10.2118/210580-PA [32] 刘维,高德利. 大齿快切PDC钻头提速研究与现场试验[J]. 天然气工业,2022,42(9):102–110. doi: 10.3787/j.issn.1000-0976.2022.09.010LIU Wei, GAO Deli. Research and field test of large-tooth and rapid-cutting PDC bit for ROP enhancement[J]. Natural Gas Industry, 2022, 42(9): 102–110. doi: 10.3787/j.issn.1000-0976.2022.09.010 [33] IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite[J]. Nature, 2003, 421(6923): 599–600. [34] ZHAN G D, GOONERATNE C, MOELLENDICK T E, et al. Ultra-strong and catalyst-free polycrystalline diamond cutting materials for one-run-to-TD game-changing drilling technology[R]. IPTC 21342, 2021. [35] PASTUSEK P, SANDERSON D, MINKEVICIUS A, et al. Drilling interbedded and hard formations with PDC bits considering structural integrity limits[R]. SPE 189608, 2018. [36] WITT-DOERRING Y, PASTUSEK P P, ASHOK P, et al. Quantifying PDC bit wear in real-time and establishing an effective bit pull criterion using surface sensors[R]. SPE 205844, 2021. [37] BAILEY J R, ELSBORG C C, JAMES R W, et al. Design evolution of drilling tools to mitigate vibrations[J]. SPE Drilling & Completion, 2013, 28(4): 350–369. [38] WEI Jiusen, LIU Wei, GAO Deli. Effect of cutter shape on the resistance of PDC cutters against tip impacts[J]. SPE Journal, 2022, 27(5): 3035–3050. doi: 10.2118/209809-PA [39] HEATON D N, LYNN J B. Polycrystalline diamond elements and systems and methods for fabricating the same: US 20190085641 A1[P]. 2019-03-21. [40] KANYANTA V, DORMER A, MURPHY N, et al. Impact fatigue fracture of polycrystalline diamond compact (PDC) cutters and the effect of microstructure[J]. International Journal of Refractory Metals and Hard Materials, 2014, 46: 145–151. doi: 10.1016/j.ijrmhm.2014.06.003 [41] RAHMANI R, PASTUSEK P, YUN Geng, et al. Investigation of PDC cutter structural integrity in hard rocks[J]. SPE Drilling & Completion, 2021, 36(1): 11–28. [42] CURRY D A, LOURENÇO A M, LEDGERWOOD L W III, et al. The effect of borehole pressure on the drilling process in salt[J]. SPE Drilling & Completion, 2017, 32(1): 25–41. [43] SHAO Fangyuan, LIU Wei, GAO Deli. Study on rock-breaking mechanism of highly plastic formations[C]//Computational and Experimental Simulations in Engineering. Cham: Springer, 2023: 103 − 116. [44] ZHAN Guodong, PATIN A, PILLAI R, et al. In-situ analysis of the microscopic thermal fracture behavior of PDC cutters using environmental scanning electron microscope[R]. SPE 168004, 2014. -