留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PDC钻头钻井提速关键影响因素研究

高德利 刘维 万绪新 郭勇

高德利,刘维,万绪新,等. PDC钻头钻井提速关键影响因素研究[J]. 石油钻探技术,2023, 51(4):20-34 doi: 10.11911/syztjs.2023022
引用本文: 高德利,刘维,万绪新,等. PDC钻头钻井提速关键影响因素研究[J]. 石油钻探技术,2023, 51(4):20-34 doi: 10.11911/syztjs.2023022
GAO Deli, LIU Wei, WAN Xuxin, et al. Study on key factors influencing the ROP improvement of PDC bits [J]. Petroleum Drilling Techniques,2023, 51(4):20-34 doi: 10.11911/syztjs.2023022
Citation: GAO Deli, LIU Wei, WAN Xuxin, et al. Study on key factors influencing the ROP improvement of PDC bits [J]. Petroleum Drilling Techniques,2023, 51(4):20-34 doi: 10.11911/syztjs.2023022

PDC钻头钻井提速关键影响因素研究

doi: 10.11911/syztjs.2023022
基金项目: 国家自然科学基金重点项目“复杂结构‘井工厂’立体设计建设基础研究”(编号:52234002)、国家自然科学基金创新研究群体项目“复杂油气井钻井与完井基础研究”(编号:51821092)、中国石油大学(北京)科研启动基金项目“高效钻头的研究”(编号:ZX20190065)联合资助
详细信息
    作者简介:

    高德利(1958—),男,山东禹城人,1982年毕业于华东石油学院钻井工程专业,1984年获西南石油学院石油矿场机械专业硕士学位,1990年获石油大学油气田开发工程专业博士学位,教授,中国科学院院士,长期从事复杂油气井工程领域的科学研究与实践。系本刊编委。E-mail: gaodeli@cup.edu.cn。

  • 中图分类号: TE21

Study on Key Factors Influencing the ROP Improvement of PDC Bits

  • 摘要:

    为了在钻井工程中发挥出PDC钻头的最大功效,通过理论分析、室内试验、案例分析、现场试验等,探讨了高钻压、高转速等钻井参数强化对PDC钻头钻速和磨损的影响规律,同时分析了PDC钻头的磨损机理与过早失效主因。研究结果表明:1)钻压是影响PDC钻头机械钻速的直接和首选因素,当钻头处于高效破岩状态时,无论钻遇一般地层还是硬岩地层,钻压与机械钻速均应呈线性关系;钻遇均质硬岩地层时,建议将200 kN以上高钻压纳入PDC钻头的常规应用参数;2)提高转速可实现钻井提速,虽然高转速会加剧PDC钻头的磨损,但目前切削齿的质量足以满足PDC钻头在高转速(400~500 r/min)下长时间钻进多数地层的需求;3)布齿密度对钻头机械钻速有影响,但并非直接因素,只要“吃得进去,切得下来,排得及时”三者建立动态平衡,即便是高布齿密度PDC钻头也可以实现优快钻进;4)PDC钻头破岩效率越高,钻头磨损会越小,如提高钻压,会增大切削齿吃入深度、减少钻头磨损;5)动态冲击和低效破岩是造成PDC切削齿和钻头过早失效的主因,实现PDC钻头高效钻进的核心是提高破岩效率与抑制钻头振动。该研究结果对PDC钻头合理使用与钻井提速技术创新具有参考意义。

     

  • 图 1  钻头高效破岩时钻压与机械钻速的关系示意

    Figure 1.  Relationship between WOB and ROP during efficient rock-breaking of the bit

    图 2  岩性和齿形对钻压与机械钻速之间关系曲线的影响

    Figure 2.  Effects of lithology and cutter shape on relationship curve between WOB and ROP

    图 3  “异常”因素作用时钻压与机械钻速的关系示意

    Figure 3.  Relationship between WOB and ROP under influences of “abnormal” factors

    图 4  脱钴PDC切削齿的磨损面积与其行进距离的关系

    Figure 4.  Relationship between wear area and travel distance of leached PDC cutter

    图 5  相同进尺下PDC钻头吃入深度与切削齿行进距离的关系

    Figure 5.  Relationship between cut depth of PDC bit and travel distance of cutter under the same drilling footage

    图 6  相同进尺下PDC钻头吃入深度与切削齿磨损体积的对应关系

    Figure 6.  Relationship between the wear volume loss of PDC cutter and the cut depth under the same footage

    图 7  转速对PDC切削齿磨损体积的影响

    Figure 7.  Effect of rotary speed on wear volume of PDC cutter

    图 8  胜利油田罗家区块二开钻井指标

    Figure 8.  Drilling data from Luojia block in Shengli Oilfield

    图 9  NPD的耐磨性和抗冲击性测试示意

    Figure 9.  Wear resistance and impact resistance tests of nano-polycrystalline diamond (NPD)

    图 10  135°斧形齿钻遇花岗岩时发生冲击失效

    Figure 10.  Impact-induced failure of 135° axe-shaped teeth when encountering granite

    图 11  PDC钻头的破岩、耐用、稳定一体化综合评价体系示意

    Figure 11.  Comprehensive evaluation system integrating rock-breaking efficiency, durability, and stability of PDC bit

    图 12  PDC切削齿聚晶金刚石层的横截面

    Figure 12.  Cross-sections of polycrystalline diamond layer of PDC cutter

    图 13  脱钴和未脱钴PDC切削齿的磨损体积与行进距离的关系

    Figure 13.  Relationships between wear volumes and travel distances of leached and non-leached PDC cutters

    图 14  抗冲击性测试后的未脱钴PDC切削齿形貌

    Figure 14.  Morphology of non-leached PDC cutter after impact resistance test

    图 15  PDC切削齿的典型出井状况

    Figure 15.  Typical dull conditions of PDC cutters pulled out of hole

    图 16  X射线检测的PDC切削齿脱钴深度

    Figure 16.  Leached depth of PDC cutters detected by X-ray

    图 17  未脱钴PDC切削齿的出井形貌

    Figure 17.  Morphology of non-leached PDC cutters pulled out of hole

    图 18  与图7对应的切削齿磨口形貌

    Figure 18.  Wear scar morphology of PDC cutter corresponding to Fig.7

    表  1  VTL试验参数

    Table  1.   Vertical turning lathe (VTL) test parameters

    试验
    编号
    每圈吃入
    深度/mm
    总的行进
    距离/m
    切削深度/
    mm
    线速度/
    (m·min−1
    #10.568 09760100
    #21.034 049
    #31.522 699
    #42.017 024
    #52.513 619
    #63.011 350
    #71.034 0496020
    #834 04960
    #934 049100
    #1034 049140
    下载: 导出CSV

    表  2  高速螺杆与常规螺杆参数对比

    Table  2.   Parameter comparison between high-speed motor and conventional motor

    螺杆类型钻压/kN工作排量/
    (L·min−1
    输出扭矩/(N·m)顶驱转速 /
    (r·min−1
    钻头转速 /
    (r·min−1
    ϕ172.0 mm高速螺杆60~1002200886960~80380~400
    ϕ172.0 mm常规螺杆60~15022001275060~80220~240
    下载: 导出CSV

    表  3  玛南风城组不同钻具组合的钻井指标

    Table  3.   Drilling performances of various bottom-hole assemblies in Fengcheng Formation on southern slope of Mahu Sag

    试验井钻头井下动力钻具单趟平均进尺/m平均机械钻速/(m·h−1井型完钻时间
    JL53井牙轮钻头、PDC钻头、复合钻头<50<1.3直井2020年
    JL56井异形齿PDC钻头常规螺杆882.0直井2020年
    MH48井孕镶钻头涡轮1931.8直井2020年
    MN520井PDC钻头旋导861.2水平井造斜段2021年
    PDC钻头高速螺杆5784.8水平井水平段
    MN272井PDC钻头高速螺杆10088.2水平井水平段2022年
    下载: 导出CSV

    表  4  胜利油田常规钻井参数与强化钻井参数对比

    Table  4.   Comparison of conventional and enhanced drilling parameters in Shengli Oilfield

    钻井参数类型钻压/kN顶驱转速 /(r·min−1排量/(L·s−1泵压/MPa提速工具
    常规钻井参数40~80704015螺杆
    强化钻井参数100~12070~80>70>20大扭矩螺杆
    下载: 导出CSV

    表  5  美国FORGE 78B-32井TKC83型PDC钻头钻井指标

    Table  5.   Drilling data of TKC83 PDC bit in FORGE Well 78B-32

    趟钻数钻头直径/mm入井井深/m进尺/m平均机械钻速/(m·h−1钻压/kN顶驱转速/(r·min−1排量/(L·s−1钻遇岩性
    7269.91 112.8643.120.429540.051.7花岗闪长岩
    9269.91 774.2267.922.329550.050.5花岗闪长岩
    13269.92 055.0265.521.229545.052.4花岗闪长岩
    14269.92 320.5270.422.529550.052.4花岗闪长岩
    下载: 导出CSV
  • [1] TEALE R. The concept of specific energy in rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1965, 2(1): 57–73.
    [2] IADC Drilling Manual. Mechanics and performance[M]. 12th ed. Houston: International Association of Drilling Contractors, 2014.
    [3] DUPRIEST F E, KOEDERITZ W L. Maximizing drill rates with real-time surveillance of mechanical specific energy[R]. SPE 92194, 2005.
    [4] DUPRIEST F E, WITT J W, REMMERT S M. Maximizing ROP with real-time analysis of digital data and MSE[R]. IPTC 10607, 2005.
    [5] DUPRIEST F E. Comprehensive drill-rate management process to maximize rate of penetration[R]. SPE 102210, 2006.
    [6] DUPRIEST F E, NOYNAERT S, CUNNINGHAM T, et al. Maximizing drilling performance through the Delaware Basin brushy canyon and interbedded formations[R]. SPE 199599, 2020.
    [7] DUPRIEST F, PASTUSEK P, LAI S, et al. Standardization of mechanical specific energy equations and nomenclature[R]. SPE 208777, 2022.
    [8] WATSON W, DUPRIEST F, WITT-DOERRING Y, et al. IADC code upgrade: data collection and workflow required to conduct bit forensics and create effective changes in practices or design[R]. SPE 208712, 2022.
    [9] DUPRIEST F, NOYNAERT S. Drilling practices and workflows for geothermal operations[R]. SPE 208798, 2022.
    [10] K&M Technology Group. Pre-tour with K&M technology group-limiter identification and redesign with Fred Dupriest[EB/OL]. (2021-01-22)[2022-12-01].https://www.youtube.com/watch?v=tiBrMF0TBdg.
    [11] SUGIURA J, LOPEZ R, BORJAS F, et al. Oil and gas drilling optimization technologies applied successfully to unconventional geothermal well drilling[R]. SPE 205965, 2021.
    [12] Energy and Geoscience Institute at the University of Utah. Utah FORGE: Well 16A(78)-32 drilling data[DB/OL]. (2021-01-08) [2022-12-01].https://doi.org/10.15121/1776602.
    [13] Energy and Geoscience Institute at the University of Utah. Utah FORGE Well 78B-32 daily drilling reports and logs[DB/OL]. (2021-08-09) [2022-12-01].https://doi.org/10.15121/1814488.
    [14] WATSON W, DUPRIEST F, WITT-DOERRING Y, et al. IADC code upgrade: bit and BHA forensics using rig-based photographic documentation practices[R]. SPE 208707, 2022.
    [15] PASTUSEK P. Limiter redesign processTM bit and BHA foren-sics[EB/OL]. (2021-03-28)[2022-12-01].https://www.youtube.com/watch?v=3MLBAAh21nk.
    [16] SELF J, STEVENSON M, ROBERTS T, et al. Fixed cutter bit & cutter technology set new performance standards for geothermal drilling[J]. GRC Transactions, 2021, 45: 826–846.
    [17] HELLVIK S, NYGAARD R, HOEL E, et al. PDC cutter and bit development for challenging conglomerate drilling in the Luno Field-offshore Norway[R]. SPE 151456, 2012.
    [18] CURRY D, PESSIER R, SPENCER R, et al. Assuring efficient PDC drilling[R]. SPE 184676, 2017.
    [19] RAJABOV V, MISKA S, MORTIMER L, et al. The effects of back rake and side rake angles on mechanical specific energy of single PDC cutters with selected rocks at varying depth of cuts and confining pressures[R]. SPE 151406, 2012.
    [20] ZHOU Yaneng, LIN J S. On the critical failure mode transition depth for rock cutting[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 131–137. doi: 10.1016/j.ijrmms.2013.05.004
    [21] 张端瑞,文涛,蒲磊,等. “垂直钻井工具+等壁厚螺杆”提速钻具组合先导性试验:以库车山前高陡构造克深A井为例[J]. 石油钻采工艺,2020,42(6):684–690.

    ZHANG Duanrui, WEN Tao, PU Lei, et al. Pilot test on the ROP-improvement BHA of vertical drilling tool & screw rod with equal wall thickness: a case study on Well Keshen A in the high-steep structure of Kuqa piedmont area[J]. Oil Drilling & Production Technology, 2020, 42(6): 684–690.
    [22] 康健,郝围围,刘德智,等. 高陡含砾地层大扭矩螺杆+高效PDC钻头钻井提速分析[J]. 西部探矿工程,2021,33(5):71–75. doi: 10.3969/j.issn.1004-5716.2021.05.024

    KANG Jian, HAO Weiwei, LIU Dezhi, et al. ROP optimization using high torque motor+high efficiency PDC bits in the high and steep structure gravel formation[J]. West-China Exploration Engineering, 2021, 33(5): 71–75. doi: 10.3969/j.issn.1004-5716.2021.05.024
    [23] MAJIDI R, MISKA S Z, TAMMINENI S. PDC single cutter: the effects of depth of cut and RPM under simulated borehole conditions[J]. Wiertnictwo, Nafta, Gaz, 2011, 28(1/2): 283–295.
    [24] AKBARI B, MISKA S Z. Relative significance of multiple parameters on the mechanical specific energy and frictional responses of polycrystalline diamond compact cutters[J]. Journal of Energy Resources Technology, 2017, 139(2): 022904. doi: 10.1115/1.4034291
    [25] 张学光. 哈山3井石炭系钻井提速探索与实践[J]. 内蒙古石油化工,2013,39(20):38–40.

    ZHANG Xueguang. The exploration and practice of carboniferous ROP enhancement in Hassan 3 Well[J]. Inner Mongolia Petrochemical Industry, 2013, 39(20): 38–40.
    [26] 秦文政,邱锦,王富建,等. 克拉玛依油田一区石炭系火成岩钻井技术研究[J]. 西部探矿工程,2020,32(6):100–102. doi: 10.3969/j.issn.1004-5716.2020.06.034

    QIN Wenzheng, QIU Jin, WANG Fujian, et al. Study on the drilling technology of carboniferous volcanic reservoir in Block 1 of Karamay Oilfield[J]. West-China Exploration Engineering, 2020, 32(6): 100–102. doi: 10.3969/j.issn.1004-5716.2020.06.034
    [27] SEALE R, CONROY D. PDC bits run on turbodrills: The history, facts and current developments[R]. SPE 94826, 2005.
    [28] 成海,郑卫建,夏彬,等. 国内外涡轮钻具钻井技术及其发展趋势[J]. 石油矿场机械,2008,37(4):28–31. doi: 10.3969/j.issn.1001-3482.2008.04.007

    CHENG Hai, ZHENG Weijian, XIA Bin, et al. The development trend of turbodrilling technology[J]. Oil Field Equipment, 2008, 37(4): 28–31. doi: 10.3969/j.issn.1001-3482.2008.04.007
    [29] 谭春飞. 深井超深井涡轮钻具复合钻井提高钻速技术研究[D]. 北京: 中国地质大学(北京), 2012.

    TAN Chunfei. The ROP technical research on turbo-drill composite drilling in deep & ultra-deep well[D]. Beijing: China University of Geosciences (Beijing), 2012.
    [30] KUYKEN C W, ELKASRAWY M E, AL BREIKI A M S, et al. High performance drilling onshore Abu Dhabi[R]. SPE 202142, 2021.
    [31] SHAO Fangyuan, LIU Wei, GAO Deli, et al. Development and verification of triple-ridge-shaped cutter for PDC bits[J]. SPE Journal, 2022, 27(6): 3849–3863. doi: 10.2118/210580-PA
    [32] 刘维,高德利. 大齿快切PDC钻头提速研究与现场试验[J]. 天然气工业,2022,42(9):102–110. doi: 10.3787/j.issn.1000-0976.2022.09.010

    LIU Wei, GAO Deli. Research and field test of large-tooth and rapid-cutting PDC bit for ROP enhancement[J]. Natural Gas Industry, 2022, 42(9): 102–110. doi: 10.3787/j.issn.1000-0976.2022.09.010
    [33] IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite[J]. Nature, 2003, 421(6923): 599–600.
    [34] ZHAN G D, GOONERATNE C, MOELLENDICK T E, et al. Ultra-strong and catalyst-free polycrystalline diamond cutting materials for one-run-to-TD game-changing drilling technology[R]. IPTC 21342, 2021.
    [35] PASTUSEK P, SANDERSON D, MINKEVICIUS A, et al. Drilling interbedded and hard formations with PDC bits considering structural integrity limits[R]. SPE 189608, 2018.
    [36] WITT-DOERRING Y, PASTUSEK P P, ASHOK P, et al. Quantifying PDC bit wear in real-time and establishing an effective bit pull criterion using surface sensors[R]. SPE 205844, 2021.
    [37] BAILEY J R, ELSBORG C C, JAMES R W, et al. Design evolution of drilling tools to mitigate vibrations[J]. SPE Drilling & Completion, 2013, 28(4): 350–369.
    [38] WEI Jiusen, LIU Wei, GAO Deli. Effect of cutter shape on the resistance of PDC cutters against tip impacts[J]. SPE Journal, 2022, 27(5): 3035–3050. doi: 10.2118/209809-PA
    [39] HEATON D N, LYNN J B. Polycrystalline diamond elements and systems and methods for fabricating the same: US 20190085641 A1[P]. 2019-03-21.
    [40] KANYANTA V, DORMER A, MURPHY N, et al. Impact fatigue fracture of polycrystalline diamond compact (PDC) cutters and the effect of microstructure[J]. International Journal of Refractory Metals and Hard Materials, 2014, 46: 145–151. doi: 10.1016/j.ijrmhm.2014.06.003
    [41] RAHMANI R, PASTUSEK P, YUN Geng, et al. Investigation of PDC cutter structural integrity in hard rocks[J]. SPE Drilling & Completion, 2021, 36(1): 11–28.
    [42] CURRY D A, LOURENÇO A M, LEDGERWOOD L W III, et al. The effect of borehole pressure on the drilling process in salt[J]. SPE Drilling & Completion, 2017, 32(1): 25–41.
    [43] SHAO Fangyuan, LIU Wei, GAO Deli. Study on rock-breaking mechanism of highly plastic formations[C]//Computational and Experimental Simulations in Engineering. Cham: Springer, 2023: 103 − 116.
    [44] ZHAN Guodong, PATIN A, PILLAI R, et al. In-situ analysis of the microscopic thermal fracture behavior of PDC cutters using environmental scanning electron microscope[R]. SPE 168004, 2014.
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  142
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2023-02-01
  • 网络出版日期:  2023-02-11

目录

    /

    返回文章
    返回