Carbon Emission Reduction Technologies and Operation Management in Petroleum Engineering Abroad: Up-to-Date Status and Implications
-
摘要:
随着世界各国“双碳”目标的提出,能源结构低碳化转型成为必然,传统石油工程作业中的碳减排已成为国内外石油公司的关注重点。概述了国外大型油公司和油服公司的低碳转型发展策略,从电动化装备、井下工具、井下流体、工艺技术和信息技术等方面,介绍了国外石油工程碳减排技术的发展现状,并从地质工程一体化、“工厂化”钻井模式2方面介绍了国外石油工程碳减排作业管理模式的发展现状。我国石油工程碳减排技术与作业管理模式取得了较大进展,但与国外相比,差距仍然较大。为此,基于国外石油工程碳减排技术和作业管理的发展现状,得到了我国石油工程碳减排技术发展的几点启示:做好石油工程碳减排技术顶层设计,加大碳减排工程技术创新力度,优化石油工程管理模式,加强政策扶持,加速推进石油工程碳减排人才队伍建设。这对推动我国石油工程行业碳减排技术发展、加快油气行业绿色低碳转型和高质量发展具有现实意义。
Abstract:As countries around the world put forward their “dual carbon” targets (carbon peaking and carbon neutrality), the low-carbon transformation of the energy structure has become inevitable, and carbon emission reduction in traditional petroleum engineering operations has attracted the focus of oil companies both in China and abroad. The development strategies of large oil companies and oil service companies abroad for low-carbon transformation were summarized, and the up-to-date carbon emission reduction technologies in foreign petroleum engineering were introduced from the aspects of electrified equipment, downhole tools, downhole fluids, process technologies, and information technologies, etc. Then, the up-to-date status of operation management modes for carbon emission reduction in petroleum engineering abroad were discussed from the perspectives of geological-engineering integration and the “factory-like” drilling mode. China's emission reduction technologies and operation management modes in petroleum engineering have also made substantial progress, although they still have a long way to go compared with their international counterparts. For this reason, some enlightenments for the development of carbon emission reduction technologies in petroleum engineering in China were proposed on the basis of analyzing the up-to-date carbon emission reduction technologies and operation management in petroleum engineering abroad. Specifically, they are conducting solid top-level design for carbon emission reduction technologies in petroleum engineering, stepping up engineering technology innovation for carbon emission reduction, optimizing management modes in petroleum engineering, reinforcing policy support, and accelerating the construction of talent team for carbon emission reduction in petroleum engineering. The results have practical significance for promoting the development of carbon emission reduction technologies in petroleum engineering and accelerating the green and low-carbon transformation and high-quality development of the oil and gas industry in China.
-
-
-
[1] WANG Jianliang, FENG Lianyong, TANG Xu, et al. The implications of fossil fuel supply constraints on climate change projections: a supply-side analysis[J]. Futures, 2017, 86: 58–72. doi: 10.1016/j.futures.2016.04.007
[2] 王敏生,姚云飞. 碳中和约束下油气行业发展形势及应对策略[J]. 石油钻探技术,2021,49(5):1–6. doi: 10.11911/syztjs.2021070 WANG Minsheng, YAO Yunfei. Development situation and countermeasures of the oil and gas industry facing the challenge of carbon neutrality[J]. Petroleum Drilling Techniques, 2021, 49(5): 1–6. doi: 10.11911/syztjs.2021070
[3] 王天娇. 国际石油公司加强低碳转型探索[J]. 中国石化,2021(9):9–13. WANG Tianjiao. The international oil companies strengthen the exploration of low-carbon transformation[J]. Sinopec Monthly, 2021(9): 9–13.
[4] 司进,张运东,刘朝辉,等. 国外大石油公司碳中和战略路径与行动方案[J]. 国际石油经济,2021,29(7):28–35. doi: 10.3969/j.issn.1004-7298.2021.07.005 SI Jin, ZHANG Yundong, LIU Zhaohui, et al. Strategic path to carbon neutrality and action plan of large foreign oil companies[J]. International Petroleum Economics, 2021, 29(7): 28–35. doi: 10.3969/j.issn.1004-7298.2021.07.005
[5] 王天娇,徐学忠. 雪佛龙: 低碳业务动作频频[J]. 中国石化,2021(9):32–36. WANG Tianjiao, XU Xuezhong. Chevron: low-carbon business acts frequently[J]. Sinopec Monthly, 2021(9): 32–36.
[6] 范旭强,陈明卓,余岭. 国际油服公司转型发展战略及思考[J]. 国际石油经济,2021,29(9):8–15. doi: 10.3969/j.issn.1004-7298.2021.09.002 FAN Xuqiang, CHEN Mingzhuo, YU Ling. Transformation and development strategy of international oilfield service company[J]. International Petroleum Economics, 2021, 29(9): 8–15. doi: 10.3969/j.issn.1004-7298.2021.09.002
[7] 王灿,张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理,2020,12(6):58–64. WANG Can, ZHANG Yaxin. Implementation pathway and policy system of carbon neutrality vision[J]. Chinese Journal of Environmental Management, 2020, 12(6): 58–64.
[8] 黄晶,孙新章,张贤. 中国碳中和技术体系的构建与展望[J]. 中国人口·资源与环境,2021,31(9):24–28. HUANG Jing, SUN Xinzhang, ZHANG Xian. Construction and prospect of the typological framework of technologies for carbon neutrality in China[J]. China Population Resources and Environment, 2021, 31(9): 24–28.
[9] 韩勇,任艳辉,张悦,等. 石油钻井机械 “电代油” 配套技术研究[J]. 中国设备工程,2020(4):190–192. doi: 10.3969/j.issn.1671-0711.2020.04.115 HAN Yong, REN Yanhui, ZHANG Yue, et al. “Electricity replaces oil” supporting technology research of petroleum drilling machinery[J]. China Plant Engineering, 2020(4): 190–192. doi: 10.3969/j.issn.1671-0711.2020.04.115
[10] Halliburton Company. All-electric fracturing-brochure[EB/OL]. [2022-02-17]. https://www.halliburton.com/en/resources/zeus-all-electric-fracturing.
[11] BRUTON G, CROCKETT R, TAYLOR M, et al. PDC bit technology for the 21st century[J]. Oilfield Review, 2014, 26(2): 48–57.
[12] Baker Hughes. Stay cool multidimensional cutter technology[EB/OL]. [2022-02-20]. http://www.bakerhughes.com/products-and-services/drilling/drill-bit-systems/pdc-bits/staycool-multidimensional-cutter-technology.
[13] Schlumberger Company. Aegis armor cladding improve erosion resistance of steel-bodied bits[EB/OL]. [2022-02-17].https://www.slb.com/-/media/files/bdt/product-sheet/aegis-armor-cladding-ps.ashx.
[14] Halliburton Company. Crush & ShearTM hybrid bit technologyimproves drilling efficiency[EB/OL]. [2022-02-17].https://www.halliburton.com/en/resources/crush-shear-hybrid-bit-technology-improves-drilling-efficiency.
[15] 周祥林,张金成,张东清. TorkBuster扭力冲击器在元坝地区的试验应用[J]. 钻采工艺,2012,35(2):15–17. doi: 10.3969/J.ISSN.1006-768X.2012.02.05 ZHOU Xianglin, ZHANG Jincheng, ZHANG Dongqing. Experimental application of TorkBuster torsional impactor in Yuanba region[J]. Drilling & Production Technology, 2012, 35(2): 15–17. doi: 10.3969/J.ISSN.1006-768X.2012.02.05
[16] 穆总结,李根生,黄中伟,等. 振动冲击钻井提速技术现状及发展趋势[J]. 石油钻采工艺,2020,42(3):253–260. MU Zongjie, LI Gensheng, HUANG Zhongwei, et al. Status and development trend of vibration-impact ROP improvement technologies[J]. Oil Drilling & Production Technology, 2020, 42(3): 253–260.
[17] XUAN Lingchao, GUAN Zhichuan, HU Huaigang, et al. The principle and application of a novel rotary percussion drilling tool drived by positive displacement motor[R]. SPE 180535-MS, 2016.
[18] Tomax Company. Anti stick-slip tool[EB/OL]. [2022 − 02 − 17].https://tomax.no/products/.
[19] NOV Company. Agitator technologies[EB/OL]. [2022-02-17].https://www.nov.com/products/agitator-technologies.
[20] JONES S, FEDDEMA C, SUGIURA J. A new steady weight-on-bit tool reduces torque and RPM variations and enhances drilling efficiency and bit/BHA life[R]. SPE 178818-MS, 2016.
[21] MGS Company. Introduction and data sheet for pure bore water base fluids[EB/OL]. [2022-02-17]. https://kicanada.com/MineProducts.htm.
[22] Schlumberger Company. ULTRADRIL: the standard for high performance, ultra-inhibitive water-base drilling fluids[EB/OL]. [2022-02-17].https://www.slb.com/-/media/files/mi/brochure/ultradril-brochure.
[23] Baker Hughes Company. DELTA-TEQ low-impact drilling fluid[EB/OL]. [2022-02-17].https://www.bakerhughes.com/drilling/drilling-fluids/invert-emulsion-drilling-fluids/deltateq-lowpressureimpact-drilling-fluid.
[24] Halliburton Company. BaraStream®[EB/OL]. [202-02-17]. https://www.halliburton.com/en/products/barastream.
[25] Schlumberger Company. VeraTherm: high-temperature water-based drilling fluid[EB/OL]. [2022-02-17]. https://www.slb.com/videos/veratherm.
[26] SCHUMACKER E, VOLGELSBERG P. Slimhole unconventional well-design optimization enables drilling performance improvement and cost reduction[J]. SPE Drilling & Completion, 2019, 34(4): 426–440.
[27] 刘平全. 径向水平井技术发展及工具特点[J]. 石油矿场机械,2018,47(1):23–27. LIU Pingquan. Design and operation of descaling device used for tubing string[J]. Oil Field Equipment, 2018, 47(1): 23–27.
[28] 贾建超,廖华林,于怀彬,等. 水力喷射径向钻孔器的流场特性[J]. 断块油气田,2020,27(1):122–125. doi: 10.6056/dkyqt202001025 JIA Jianchao, LIAO Hualin, YU Huaibin, et al. Study on flow field characteristics of hydraulic jet radial drill[J]. Fault-Block Oil & Gas Field, 2020, 27(1): 122–125. doi: 10.6056/dkyqt202001025
[29] 光新军,王敏生,皮光林. 超高压水射流钻井技术现状及发展建议[J]. 钻采工艺,2017,40(1):37–40. doi: 10.3969/J.ISSN.1006-768X.2017.01.10 GUANG Xinjun, WANG Minsheng, PI Guanglin. Status and development suggestion for high-pressure water jet drilling[J]. Drilling & Production Technology, 2017, 40(1): 37–40. doi: 10.3969/J.ISSN.1006-768X.2017.01.10
[30] 聂臻,于凡,黄根炉,等. 伊拉克H油田Sadi油藏鱼骨井井眼布置方案研究[J]. 石油钻探技术,2020,48(1):46–53. doi: 10.11911/syztjs.2019120 NIE Zhen, YU Fan, HUANG Genlu, et al. Wellbore arrangement schemes for fishbone wells in the Sadi Reservoir of the H Oilfield in Iraq[J]. Petroleum Drilling Techniques, 2020, 48(1): 46–53. doi: 10.11911/syztjs.2019120
[31] 杨睿月. 煤层气鱼骨井钻完井一体化方法研究与产能预测[D]. 北京: 中国石油大学(北京), 2017. YANG Ruiyue. Complementary fishbones jet drilling and production optimization in coalbed methane reservoirs[D]. Beijing: China University of Petroleum(Beijing), 2017.
[32] 杨传书,李昌盛,孙旭东,等. 人工智能钻井技术研究方法及其实践[J]. 石油钻探技术,2021,49(5):7–13. doi: 10.11911/syztjs.2020136 YANG Chuanshu, LI Changsheng, SUN Xudong, et al. Research method and practice of artificial intelligence drilling technology[J]. Petroleum Drilling Techniques, 2021, 49(5): 7–13. doi: 10.11911/syztjs.2020136
[33] 李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. doi: 10.11911/syztjs.2020001 LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
[34] ZBOROWSKI M. How ConocoPhillips solved its big data problem[J]. Journal of Petroleum Technology, 2018, 70(7): 21–26. doi: 10.2118/0718-0021-JPT
[35] Schlumberger Company. Cognitive technology in DELFI[EB/OL]. [2022-02-17].https://www.software.slb.com/delfi/cognitive.
[36] Globes. Fieldbit’s smart glasses prevent oil spills[EB/OL]. (2019-07-02)[2022-02-17].https://pubs.spe.org/en/dsde/dsde-article-detail-page/?art=5674.
[37] JPT Staff. Sensabot: a safe and cost-effective inspection solution[J]. Journal of Petroleum Technology, 2012, 64(10): 32–34. doi: 10.2118/1012-0032-JPT
[38] Saudi Arabian Oil Company. Saudi Aramco recognized as a leader in the Fourth Industrial Revolution[EB/OL]. (2019 -01-21)[2022-02-17].https://www.saudiaramco.com/en/news-media/news/2019/gas-plant-recognized-as-a-factory-of-the-future.
[39] 赵福豪,黄维安,雍锐,等. 地质工程一体化研究与应用现状[J]. 石油钻采工艺,2021,43(2):131–138. doi: 10.13639/j.odpt.2021.02.001 ZHAO Fuhao, HUANG Weian, YONG Rui, et al. Research and application status of geology-engineering integration[J]. Oil Drilling & Production Technology, 2021, 43(2): 131–138. doi: 10.13639/j.odpt.2021.02.001
[40] 何利,肖阳,孙宜成,等. 车21井区裂缝性油藏地质建模与工程设计一体化研究[J]. 特种油气藏,2021,28(1):23–29. doi: 10.3969/j.issn.1006-6535.2021.05.004 HE Li, XIAO Yang, SUN Yicheng, et al. On integration of geological modeling and engineering design of fractured oil reservoirs in Well Block Che21[J]. Special Oil & Gas Reserviors, 2021, 28(1): 23–29. doi: 10.3969/j.issn.1006-6535.2021.05.004
[41] 章敬. 非常规油藏地质工程一体化效益开发实践: 以准噶尔盆地吉木萨尔凹陷芦草沟组页岩油为例[J]. 断块油气田,2021,28(2):151–155. ZHANG Jing. Effective development practices of geology-engineering integration on unconventional oil reservoirs: taking Lucaogou Formation shale oil in Jimsar Sag, Junggar Basin for example[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 151–155.
[42] 何光伟. 长庆致密油气藏工厂化井组快速钻井技术集成与规模化应用研究[D]. 西安: 西北大学, 2018. HE Guangwei. Research on integration and scale application of rapid drilling technology for factory well group in Changqing dense oil and gas[D]. Xi’an: Northwest University, 2018.
-
期刊类型引用(9)
1. 苏延鹤. 智能钻井液监测技术研究现状及发展趋势. 西部资源. 2024(02): 62-66 . 百度学术
2. 李进军,周威,张磊. 在线监控系统管线冲洗技术研究. 地质装备. 2024(03): 32-35 . 百度学术
3. 亢武臣,杨书博,赵琪琪,黄豪彩,丁士东. 基于优化变分模态分解和互相关的钻井液脉冲信号处理方法. 石油钻探技术. 2023(03): 144-151 . 本站查看
4. 张鑫鑫,梁博文,张晓龙,张绍和,金新. 智能钻井装备与技术研究进展. 煤田地质与勘探. 2023(09): 20-30 . 百度学术
5. 汤历平,刘宸希,张磊,李富强,夏洪运,阳杰,丁俊. 直井测斜泥浆脉冲发生器阀头参数优化研究. 机械强度. 2023(05): 1130-1140 . 百度学术
6. 雷艳惠. 强噪音环境下基于震动信号的车辆适应性分析. 环境技术. 2020(03): 138-141+147 . 百度学术
7. 潘一,徐明磊,郭永成,KANTOMA Daniel Bala,廖广志,杨双春. 智能钻井液的化学体系及辅助系统研究进展. 精细化工. 2020(11): 2246-2254 . 百度学术
8. 王艳玲,赵得智,王闻婧,刘有维. 基于嵌入式技术的红外信号实时处理系统研究. 激光杂志. 2020(12): 141-145 . 百度学术
9. 胡永建. 有保护时隙的高效PPM钻井液脉冲信号编码. 石油钻探技术. 2018(06): 118-122 . 本站查看
其他类型引用(4)