Cementing Technology Using a Nitrogen-Filled Foamed Cement Slurry for Horizontal Shale Gas Wells in the Eastern Chongqing Area
-
摘要:
为了解决渝东地区常压页岩气水平井用生产套管固井时易漏及分段压裂后环空带压的技术难点,研究了机械充氮泡沫水泥浆固井技术。通过优选发泡剂、稳泡剂,设计了泡沫低密度水泥浆;基于高压气体状态方程,进行了泡沫水泥浆全过程平衡压力及浆柱结构设计,建立了井筒压力条件下的泡沫水泥浆密度计算模型,形成了机械充氮泡沫水泥浆固井技术。泡沫低密度水泥浆的密度调整范围为0.80~1.55 kg/L,水泥浆中泡沫的半衰周期为33.8 h,泡沫水泥石的弹性模量为4.6 GPa。泡沫水泥石在循环载荷测试条件下的残余应变为0.21%,具有良好的力学性能;采用全过程平衡压力固井技术和分段注气泡沫低密度水泥浆注结构设计方法,能满足固井防漏要求。渝东地区20口常压页岩气水平井应用了机械充氮泡沫水泥浆固井技术,固井过程中未发生漏失,固井质量优良率100%,且压裂后未出现环空带压现象。研究和现场应用表明,采用机械充氮泡沫水泥浆固井技术可以解决渝东地区常压页岩气水平井生产套管固井时的漏失问题,且泡沫水泥石具有良好的弹性变形性能,能够防止压裂后环空带压。
Abstract:Normal pressure horizontal shale gas wells in the eastern Chongqing area are prone to leakage during the process of production casing cementing, and often encounter sustained casing pressure (SCP) after staged fracturing. To solve these technical difficulties, this paper studied the cementing technology of mechanical nitrogen-filled foamed cement slurry. Foaming agents and foam stabilizers were selected in the design of low-density foamed cement slurry. Based on the high-pressure gas equation of state, the whole-process pressure balancing of foamed cement slurry and the design of the slurry column structure were performed, and a density calculation model of foamed cement slurry under wellbore pressure was built. In this way, a cementing technology using mechanical nitrogen-filled foamed cement slurry was developed. Specifically, the density of low-density foamed cement slurry ranged from 0.80 to 1.55 kg/L, and the half-life of foam in cement slurry was 33.8 h, with the elastic modulus of foamed cement paste being 4.6 GPa. The residual strain of foamed cement paste under cyclic loading was 0.21%, which demonstrated its good mechanical properties. The whole-process pressure-balancing cementing technology and the slurry column structure design of low-density foamed cement with staged gas injection could meet the requirements of cementing for leakage prevention. When the technology was applied to 20 horizontal shale gas wells in the eastern Chongqing area, no leakage occurred during the construction process, with an excellent rate of cementing quality of 100%, and there was no SCP after fracturing. Research and field applications indicate that the cementing technology using mechanical nitrogen-filled foamed cement slurry can solve the leakage problem of horizontal shale gas wells in the eastern Chongqing area during the production casing cementing, and the foamed cement paste has good elastic deformation, which can prevent SCP after fracturing.
-
-
表 1 发泡剂和稳泡剂加量优化
Table 1 Dosage optimization of foaming agents and foam stabilizers
发泡剂种类 发泡剂加量,% 稳泡剂种类 稳泡剂加量,% 半衰期/h 静切力/Pa 93 ℃ 110 ℃ 蛋白质发泡剂 1.0 高分子稳泡剂 0.6 4.2 1.6 3 2.0 1.0 18.6 9.1 5 高分子发泡剂 1.0 高温稳泡剂 0.6 12.5 10.9 6 2.0 0.6 36.5 33.8 13 表 2 泡沫水泥浆的流变参数
Table 2 Rheological properties of foamed cement slurry
配方 黏度计读数 n K/(Pa·sn) Φ600 Φ300 Φ200 Φ100 Φ6 Φ3 1 >300 255 190 121 15 10 0.71 1.51 2 232 120 95 56 10 7 0.65 1.14 表 3 渝东地区常压页岩气水平井固井防漏防窜浆柱结构设计
Table 3 Slurry column structure design for leakage and channeling prevention of cementing in horizontal shale gas wells under ordinary pressure in the eastern Chongqing area
序号 浆体 密度/(kg·L−1) 井筒位置 1 钻井液 1.30~1.35 0~400 m 2 低密度泡沫水泥浆 1.25~1.32 400~1 500 m 3 低密度泡沫水泥浆 1.32~1.37 1 500 m至技术套管鞋以浅300 m 4 弹韧性水泥浆 1.88~1.90 技术套管鞋以浅300 m至技术套管鞋以深100 m 5 泡沫水泥浆 1.55~1.60 技术套管鞋以深100 m
至A靶点6 弹韧性水泥浆 1.88~1.90 A靶点以深地层 表 4 焦页207-1HF井机械充氮泡沫水泥浆注气参数设计
Table 4 Parameter design of gas injection for mechanical nitrogen-filled foam cement slurry in Well Jiaoye 207-1HF
段序 井深/m 水泥浆排量/
(m3·min−1)水泥浆用量/
m3氮气与水泥浆体积比 氮气排量/
(m3·min−1)水泥浆井下密度/
(kg·L−1)1 0~400 1.35(钻井液) 2 400~1500 1.2 12.80 65.0 78.0 1.30(平均) 3 1500~2100 1.0 10.50 83.0 83.0 1.32 2100~2900 0.8 14.50 106.3 85.0 1.37 4 3000~4100 1.3 24.20 67.0 87.1 1.60 5 4100~5966 1.4 52.24 1.88 -
[1] 方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策[J]. 油气藏评价与开发,2019,9(5):1–13. doi: 10.3969/j.issn.2095-1426.2019.05.001 FANG Zhixiong. Challenges and countermeasures for exploration and development of normal pressure shale gas in Southern China[J]. Reservoir Evaluation and Development, 2019, 9(5): 1–13. doi: 10.3969/j.issn.2095-1426.2019.05.001
[2] 魏力民,王岩,张天操,等. 页岩气富集与高产主控因素:以川南地区五峰组—龙马溪组为例[J]. 断块油气田,2020,27(6):700–704. WEI Limin, WANG Yan, ZHANG Tiancao, et al. Main control factors of enrichment and high-production of shale gas:a case study of Wufeng-Longmaxi Formation in Southern Sichuan[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 700–704.
[3] 彭兴,周玉仓,龙志平,等. 南川地区页岩气水平井优快钻井技术进展及发展建议[J]. 石油钻探技术,2020,48(5):15–20. doi: 10.11911/syztjs.2020057 PENG Xing, ZHOU Yucang, LONG Zhiping, et al. Progress and development recommendations for optimized fast drilling technology in shale gas horizontal wells in the Nanchuan Area[J]. Petroleum Drilling Techniques, 2020, 48(5): 15–20. doi: 10.11911/syztjs.2020057
[4] 左京杰, 张振华, 姚如钢, 等. 川南页岩气地层油基钻井液技术难题及案例分析[J]. 钻井液与完井液,2020,37(3):294–300. ZUO Jingjie, ZHANG Zhenhua, YAO Rugang, et al. Technical difficulties and case study of oil base drilling fluid operation in shale gas drilling in south Sichuan[J]. Drilling Fluid & Completion Fluid, 2020, 37(3): 294–300.
[5] 李传武,兰凯,杜小松,等. 川南页岩气水平井钻井技术难点与对策[J]. 石油钻探技术,2020,48(3):16–21. LI Chuanwu, LAN Kai, DU Xiaosong, et al. Difficulties and countermeasures in horizontal well drilling for shale gas in Southern Sichuan[J]. Petroleum Drilling Techniques,, 2020, 48(3): 16–21.
[6] 陶谦,陈星星. 四川盆地页岩气水平井B环空带压原因分析与对策[J]. 石油钻采工艺,2017,39(5):588–593. TAO Qian, CHEN Xingxing. Causal analysis and countermeasures on b sustained casing pressure of shale-gas horizontal wells in the Sichuan Basin[J]. Oil Drilling & Production Technology, 2017, 39(5): 588–593.
[7] 陈雷,陈会年,张林海,等. JY 页岩气田水平井预防环空带压固井技术[J]. 石油钻采工艺,2019,41(2):152–159. CHEN Lei, CHEN Huinian, ZHANG Linhai, et al. A cementing technology for preventing the annulus pressure of horizontal wells in JY Shale Gasfield[J]. Oil Drilling & Production Technology, 2019, 41(2): 152–159.
[8] 谭春勤,丁士东,刘伟,等. SFP弹韧性水泥浆体系在页岩气井中的应用[J]. 石油钻探技术,2011,39(3):53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009 TAN Chunqin, DING Shidong, LIU Wei, et al. Application of SFP elasto-toughness slurry in shale gas well[J]. Petroleum Drilling Techniques, 2011, 39(3): 53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009
[9] 刘洋,严海兵,余鑫,等. 井内压力变化对水泥环密封完整性的影响及对策[J]. 天然气工业,2014,34(4):95–98. LIU Yang, YAN Haibing, YU Xin, et al. Negative impacts of borehole pressure change on cement sheath sealing integrity and countermeasures[J]. Natural Gas Industry, 2014, 34(4): 95–98.
[10] 肖京男,刘建,桑来玉,等. 充气泡沫水泥浆固井技术在焦页9井的应用[J]. 断块油气田,2016,23(6):835–837. XIAO Jingnan, LIU Jian, SANG Laiyu, et al. Application of foamed cement slurry to Jiaoye-9 Well[J]. Fault-Block Oil & Field, 2016, 23(6): 835–837.
[11] 肖京男,方春飞,周仕明,等. 泡沫分数对泡沫水泥性能的影响规律分析[J]. 钻井液与完井液,2015,32(5):69–72. XIAO Jingnan, FANG Chunfei, ZHOU Shiming, et al. Effect of gas volume fraction in foam on performance of foam cement slurry[J]. Drilling Fluid & Completion Fluid, 2015, 32(5): 69–72.
[12] 周仕明,李根生,初永涛. 防气窜固井分段设计方法[J]. 石油钻探技术,2013,41(5):52–55. ZHOU Shiming, LI Gensheng, CHU Yongtao. Sectional design for anti-gas channeling cementing[J]. Petroleum Drilling Techniques, 2013, 41(5): 52–55.
[13] 孙坤忠,陶谦,周仕明,等. 丁山区块深层页岩气水平井固井技术[J]. 石油钻探技术,2015,43(3):55–60. SUN Kunzhong, TAO Qian, ZHOU Shiming, et al. Cementing technology for deep shale gas horizontal well in the Dingshan Block[J]. Petroleum Drilling Techniques, 2015, 43(3): 55–60.
[14] DRECQ P, PARCEVAUX P A. A single technique solves gas migration problems across a wide range of conditions[R]. SPE 17629, 1988.
[15] DEBRUIJN G G, SISO C, REINHEIMER D. Flexible cement improves wellbore integrity for steam assisted gravity drainage (SAGD) wells[R]. SPE 117859, 2008.
[16] 孙宝江,王雪瑞,王志远,等. 控制压力固井技术研究进展及展望[J]. 石油钻探技术,2019,47(3):56–61. doi: 10.11911/syztjs.2019066 SUN Baojiang, WANG Xuerui, WANG Zhiyuan, et al. Research development and outlook for managed pressure cementing technology[J]. Petroleum Drilling Techniques, 2019, 47(3): 56–61. doi: 10.11911/syztjs.2019066
[17] 李早元,郭小阳,罗发强,等. 油井水泥环降脆增韧作用机理研究[J]. 石油学报,2008,29(3):438–441. doi: 10.3321/j.issn:0253-2697.2008.03.025 LI Zaoyuan, GUO Xiaoyang, LUO Faqiang, et al. Research on mechanism of increasing flexibility and decreasing brittleness of cement sheath in oil well[J]. Acta Petrolei Sinica, 2008, 29(3): 438–441. doi: 10.3321/j.issn:0253-2697.2008.03.025
[18] 刘仍光,周仕明,陶谦,等. 掺橡胶乳液和弹性粒子柔性油井水泥石的微结构[J]. 硅酸盐学报,2015,43(10):1475–1482. LIU Rengguang, ZHOU Shiming, TAO Qian, et al. Micro-structure of flexible oilwell cement stone mixed with latex and elastic particle[J]. Journal of the Chinese Ceramic Society, 2015, 43(10): 1475–1482.
[19] DAVIES D R, HARTOG J J, COBBETT J S. Foamed cement: a cement with many applications[R]. SPE 9598, 1981.
[20] JEAN D, FERRIERE R. Foamed cement characterization under downhole conditions and its impact on job design[J]. SPE Production Engineering, 1991, 6(3): 297–304. doi: 10.2118/19935-PA
[21] GUILLOT D J, BASTARD E L. Learnings from foamed cement job simulations[R]. OTC 23666, 2012.
[22] GREEN K, JOHNSON P G, HOBBERSTAD R. Foam cementing on the eldfisk field: a case study[R]. SPE 79912, 2003.
[23] DOOPLY M, ELHANCHA A, BRUIJN G D, et al. Application of real-time process control and engineering software simulation in foam cementing[R]. SPE 168033, 2014.
-
期刊类型引用(5)
1. 糜利栋,张睿,曾大乾,石志良,邹宇,徐中一,李倩. 在产气藏季节调峰选区评价体系及标准. 天然气工业. 2025(02): 73-83 . 百度学术
2. 胡瑾秋,肖慈盼,许子涵,刘若昕. 基于模糊逻辑与系统理论融合的地下储气库老井封堵施工风险评价方法. 天然气工业. 2025(03): 112-122 . 百度学术
3. 王秀坤,武文胜,王玄,宋刚祥. 咸水层地下储氢与储碳多尺度数值模拟. 华南师范大学学报(自然科学版). 2025(01): 13-21 . 百度学术
4. 秦佳正,邱帅,乔宇,汤勇,何佑伟. CO_2作为垫气的气藏型储气库工作气量评价及影响因素分析. 华南师范大学学报(自然科学版). 2025(01): 1-12 . 百度学术
5. 郭海伟. 基于增量学习的储气库井底压力快速计算方法. 断块油气田. 2025(02): 292-299 . 百度学术
其他类型引用(1)