极地钻井井筒温度压力预测模型及分布规律研究

余意 王雪瑞 柯珂 王迪 于鑫 高永海

余意, 王雪瑞, 柯珂, 王迪, 于鑫, 高永海. 极地钻井井筒温度压力预测模型及分布规律研究[J]. 石油钻探技术, 2021, 49(3): 11-20. doi: 10.11911/syztjs.2021047
引用本文: 余意, 王雪瑞, 柯珂, 王迪, 于鑫, 高永海. 极地钻井井筒温度压力预测模型及分布规律研究[J]. 石油钻探技术, 2021, 49(3): 11-20. doi: 10.11911/syztjs.2021047
YU Yi, WANG Xuerui, KE Ke, WANG Di, YU Xin, GAO Yonghai. Prediction Model and Distribution Law Study of Temperature and Pressure of the Wellbore in drilling in Arctic Region[J]. Petroleum Drilling Techniques, 2021, 49(3): 11-20. doi: 10.11911/syztjs.2021047
Citation: YU Yi, WANG Xuerui, KE Ke, WANG Di, YU Xin, GAO Yonghai. Prediction Model and Distribution Law Study of Temperature and Pressure of the Wellbore in drilling in Arctic Region[J]. Petroleum Drilling Techniques, 2021, 49(3): 11-20. doi: 10.11911/syztjs.2021047

极地钻井井筒温度压力预测模型及分布规律研究

doi: 10.11911/syztjs.2021047
基金项目: 国家重点研发计划项目“极地冷海钻井关键技术研究”(编号:2016YFC0303303)、国家自然科学基金青年基金项目“深海天然气水合物钻探固井水泥环–地层交界面封固失效机制研究”(编号:52004315)、山东省自然科学基金青年基金项目“海域水合物层固井水泥环–储层界面封隔失效机理研究”(编号:ZR2020QE113)和中海石油重大科技专项“南海西部油田上产2000万方钻完井关键技术研究”(编号:CNOOC-KJ135ZDXM38ZJ05ZJ)联合资助
详细信息
    作者简介:

    余意(1988—),男,湖北黄冈人,2011年毕业于东北石油大学石油工程专业,工程师,主要从事海洋钻井完井工艺、深水钻井井筒多相流动方面的研究。E-mail:yuyi2@cnooc.com.cn

    通讯作者:

    高永海,E-mail:upcgaoyh@126.com

  • 中图分类号: TE21

Prediction Model and Distribution Law Study of Temperature and Pressure of the Wellbore in drilling in Arctic Region

  • 摘要: 极地永久冻土层的低温条件会影响钻井液的流变性,从而影响极地钻井中井筒温度和压力的分布。为了解极地永久冻土层低温条件对钻井中井筒温度和压力分布的影响规律,为极地钻井设计和钻井施工提供依据,分析了低温对水基和油基钻井液流变性的影响,考虑低温对钻井液流变性的影响、永久冻土层与井筒之间的耦合作用,建立了极地钻井井筒温度压力预测模型。通过与实测结果和试验结果对比,证明极地钻井井筒温度压力预测模型的预测精度达到了极地钻井要求。利用所建模型模拟了一口极地井钻井循环和停泵工况下的温度和压力分布,结果表明:循环期间,钻井液吸收下部高温地层的热量,通过环空上返时将热量传递至井筒浅部永久冻土层,导致近井地带冻土层融化,冻土层融化消耗热量使井筒温度降低;随着循环时间增长,环空循环摩阻增大;停泵时间越长,井筒钻井液的温度越接近地层环境温度,开井时环空循环压耗越大,开井泵压也越高。研究结果可为极地井钻井设计和钻井施工提供依据和指导。
  • 图  1  不同温度下油基和水基钻井液的流变曲线

    Figure  1.  Rheological curves of oil-based and water-based drilling fluids at different temperatures

    图  2  不同温度下油基和水基钻井液的流变参数

    Figure  2.  Rheological parameters of oil-based and water-based drilling fluids at different temperatures

    图  3  不同压力下油基和水基钻井液的流变曲线

    Figure  3.  Rheological curves of oil-based and water-based drilling fluids at different pressure

    图  4  不同压力下油基和水基钻井液的流变参数

    Figure  4.  Rheological parameters of oil-based and water-based drilling fluids at different pressure

    图  5  极地钻井井筒热量传递示意

    Figure  5.  Heat transfer in the wellbore during drilling in Arctic region

    图  6  井口和井底瞬态温度实测与计算结果的对比

    Figure  6.  Comparison between measured and calculated transient temperatures at the wellhead and the bottom hole

    图  7  不同位置冻土瞬态温度实测与计算结果的对比

    Figure  7.  Comparison between measured and calculated transient temperatures of permafrost at different positions

    图  8  井身结构示意

    Figure  8.  Schematic diagram of casing program

    图  9  不同循环时间下井筒的温度分布

    Figure  9.  Temperature distribution in the wellbore at different circulating times

    图  10  不同循环时间下近井地带冻土层的温度分布

    Figure  10.  Temperature distribution of the permafrost near the wellbore at different circulating times

    图  11  极地钻井循环工况下环空压力和环空循环压耗的模拟计算结果

    Figure  11.  Simulation results for annulus pressure and circulating pressure loss in annulus during circulation of the drilling in Arctic region

    图  12  不同停泵时间下的井筒温度分布

    Figure  12.  Temperature distribution in the wellbore at different pump shutdown times

    图  13  不同停泵时间下的开井环空循环压耗及开井泵压

    Figure  13.  Circulating pressure loss of the annulus and pumping pressure during well opening at different pump shutdown times

    表  1  实测立压与计算立压的对比

    Table  1.   Comparison of measured and calculated vertical pressure

    井深/m排量/(L·s–1立压/MPa相对误差,%
    实测计算
    3 098.5028.8322.8922.710.79
    3 182.8029.3525.2925.110.71
    3 237.4028.8024.4124.170.98
    3 249.3029.3525.6225.800.70
    3 270.9026.7519.2119.451.10
    3 357.3031.5724.2124.461.00
    3 464.6732.0124.7 24.460.97
    3 516.5630.6924.0023.452.30
    3 654.3429.9123.0423.230.82
    3 739.4829.9123.9523.641.31
    3 840.2629.9123.4323.650.89
    3 888.7329.8224.9 25.402.00
    下载: 导出CSV
  • [1] 王淑玲,姜重昕,金玺. 北极的战略意义及油气资源开发[J]. 中国矿业,2018,27(1):20–26, 39.

    WANG Shuling, JIANG Chongxin, JIN Xi. The strategic significance of the Arctic and the development of oil and gas resources[J]. China Mining Magazine, 2018, 27(1): 20–26, 39.
    [2] 孙宝江. 北极深水钻井关键装备及发展展望[J]. 石油钻探技术,2013,41(3):7–12. doi:  10.3969/j.issn.1001-0890.2013.03.002

    SUN Baojiang. Progress and prospect of key equipments for Arctic deepwater drilling[J]. Petroleum Drilling Techniques, 2013, 41(3): 7–12. doi:  10.3969/j.issn.1001-0890.2013.03.002
    [3] HARRISON G R. Exploratory drilling: the polar challenge[R]. WPC 18128, 1979.
    [4] DAVISON J M, CLARY S, SAASEN A, et al. Rheology of various drilling fluid systems under deepwater drilling conditions and the importance of accurate predictions of downhole fluid hydraulics[R]. SPE 56632, 1999.
    [5] 吴彬,向兴金,张岩,等. 深水低温条件下水基钻井液的流变性研究[J]. 钻井液与完井液,2006,23(3):12–13, 19. doi:  10.3969/j.issn.1001-5620.2006.03.004

    WU Bin, XIANG Xingjin, ZHANG Yan, et al. Rheology study of the water based drilling fluids at deep water and low temperature[J]. Drilling Fluid & Completion Fluid, 2006, 23(3): 12–13, 19. doi:  10.3969/j.issn.1001-5620.2006.03.004
    [6] 纪健,袁华玉,李建,等. 深水钻井环境下低温高压对油基钻井液流变性的影响[J]. 内蒙古石油化工,2009,35(21):134–136.

    JI Jian, YUAN Huayu, LI Jian, et al. Influence of low temperature and high pressure on rheological properties of oil-based drilling fluids in deep offshore conditions[J]. Inner Mongolia Petrochemical Industry, 2009, 35(21): 134–136.
    [7] 田荣剑,王楠,李松,等. 深水作业中钻井液在低温高压条件下的流变性[J]. 钻井液与完井液,2010,27(5):5–7,87. doi:  10.3969/j.issn.1001-5620.2010.05.002

    TIAN Rongjian, WANG Nan, LI Song, et al. Research on drilling fluid rheology with low temperature and high pressure in deep water operation[J]. Drilling Fluid & Completion Fluid, 2010, 27(5): 5–7,87. doi:  10.3969/j.issn.1001-5620.2010.05.002
    [8] 胡三清,雷昕,余姣梅,等. 深水低温合成基钻井液的室内研究[J]. 石油天然气学报,2010,32(3):120–123. doi:  10.3969/j.issn.1000-9752.2010.03.027

    HU Sanqing, LEI Xin, YU Jiaomei, et al. Laboratory study on deep low-temperature synthetic-based drilling fluids[J]. Journal of Oil and Gas Technology, 2010, 32(3): 120–123. doi:  10.3969/j.issn.1000-9752.2010.03.027
    [9] 易灿,闫振来,赵怀珍. 超深井水基钻井液高温高压流变性试验研究[J]. 石油钻探技术,2009,37(1):10–13. doi:  10.3969/j.issn.1001-0890.2009.01.003

    YI Can, YAN Zhenlai, ZHAO Huaizhen. Rheological properties of water-based drilling fluids in ultra-deep wells at high temperature and high pressure[J]. Petroleum Drilling Techniques, 2009, 37(1): 10–13. doi:  10.3969/j.issn.1001-0890.2009.01.003
    [10] RAMEY H J Jr. Wellbore heat transmission[J]. Journal of Petroleum Technology, 1962, 14(4): 427–435. doi:  10.2118/96-PA
    [11] WILLHITE G P. Over-all heat transfer coefficients in stream and hot water injection wells[J]. Journal of Petroleum Technology, 1967, 19(5): 607–615. doi:  10.2118/1449-PA
    [12] WU Yushu, PRUESS K. An analytical solution for wellbore heat transmission in layered formations[J]. SPE Reservoir Engineeing, 1990, 5(4): 531–538. doi:  10.2118/17497-PA
    [13] HASAN A R, KABIR C S, AMEEN M, et al. A fluid circulating temperature model for workover oprations[J]. SPE Journal, 1996, 1(2): 133–144. doi:  10.2118/27848-PA
    [14] 高永海,孙宝江,王志远,等. 深水钻探井筒温度场的计算与分析[J]. 中国石油大学学报(自然科学版),2008,32(2):58–62.

    GAO Yonghai, SUN Baojiang, WANG Zhiyuan, et al. Calculation and analysis of wellbore temperature field in deepwater drilling[J]. Journal of China University of Petroleum(Edition of Natural Science), 2008, 32(2): 58–62.
    [15] 李梦博,柳贡慧,李军,等. 考虑非牛顿流体螺旋流动的钻井井筒温度场研究[J]. 石油钻探技术,2014,42(5):74–79.

    LI Mengbo, LIU Gonghui, LI Jun, et al. Research on wellbore temperature field with helical flow of non-Newtonian fluids in drilling operation[J]. Petroleum Drilling Techniques, 2014, 42(5): 74–79.
    [16] PETERS E J, CHENEVERT M E, ZHANG C. A model for predicting the density of oil-based muds at high pressures and temperatures[R]. SPE 18036, 1990.
    [17] OSISANYA S O, HARRIS O O. Evaluation of equivalent circulating density of drilling fluids under high-pressure/high-temperature conditions[R]. SPE 97018, 2005.
    [18] 卢秋平,邵忠,陆红锋,等. 深水天然气水合物连续管水平井钻井井筒多相流动规律研究[J]. 中国石油和化工标准与质量,2019,39(5):70–71.

    LU Qiuping, SHAO Zhong, LU Hongfeng, et al. Study on multiphase flow in wellbore of deepwater gas hydrate coiled tubing horizontal well[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(5): 70–71.
    [19] WANG Xuerui, WANG Zhiyuan, DENG Xuejing, et al. Coupled thermal model of wellbore and permafrost in Arctic regions[J]. Applied Thermal Engineering, 2017, 123: 1291–1299. doi:  10.1016/j.applthermaleng.2017.05.186
    [20] 樊洪海. 实用钻井流体力学[J]. 北京: 石油工业出版社,2014.

    FAN Honghai. Practical drilling fluid mechanics[J]. Beijing: Petroleum Industry Press, 2014.
    [21] CHEN Zhongming, XIE Liangjun. Special considerations for deepwater well temperature prediction[R]. SPE 176089, 2015.
    [22] XU Guofang, QI Jilin, JIN Huijun. Model test study on influence of freezing and thawing on the crude oil pipeline in cold regions[J]. Cold Regions Science and Technology, 2010, 64(3): 262–270. doi:  10.1016/j.coldregions.2010.04.010
  • [1] 张雄, 余进, 毛俊, 刘祖磊.  准噶尔盆地玛东油田水平井高性能油基钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.2020106
    [2] 胡祖彪, 张建卿, 王清臣, 吴付频, 韩成福, 柳伟荣.  长庆油田华H50-7井超长水平段钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.2020050
    [3] 王正旭, 高德利.  高频电磁加热稠油储层温度分布及其影响因素分析, 石油钻探技术. doi: 10.11911/syztjs.2019128
    [4] 陈远鹏, 王志远, 孙宝江, 陈野, 郑凯波.  极地钻井关键设备橡胶密封材料的优选, 石油钻探技术. doi: 10.11911/syztjs.2019111
    [5] 吴雪婷, 邹韵, 陆彦颖, 赵增义, 周城汉.  漏失循环条件下井筒温度预测与漏层位置判断, 石油钻探技术. doi: 10.11911/syztjs.2019119
    [6] 于雷, 张敬辉, 李公让, 赵怀珍, 刘天科.  低活度强抑制封堵钻井液研究与应用, 石油钻探技术. doi: 10.11911/syztjs.2018031
    [7] 郭永宾, 管申, 刘智勤, 彭巍, 曹峰.  涠洲12-1油田水平井无固相有机盐钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.201706006
    [8] 贾俊, 赵向阳, 刘伟.  长庆油田水基环保成膜钻井液研究与现场试验, 石油钻探技术. doi: 10.11911/syztjs.201705007
    [9] 吴爽.  辽河油田无固相强抑制水基钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.201706008
    [10] 何淼, 柳贡慧, 李军, 李梦博, 查春青, 李根.  多相流全瞬态温度压力场耦合模型求解及分析, 石油钻探技术. doi: 10.11911/syztjs.201502005
    [11] 舒小波, 孟英峰, 万里平, 李皋, 刘厚彬, 张宇睿.  可循环强抑制性稳定泡沫钻井液研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.04.013
    [12] 唐述凯, 李明忠, 刘陈伟, 张国栋.  闭式热流体循环井筒温度分布规律研究, 石油钻探技术. doi: 10.11911/syztjs.201405019
    [13] 李大奇, 康毅力, 刘修善, 陈曾伟, 思娜.  裂缝性地层钻井液漏失动力学模型研究进展, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.04.010
    [14] 张浩.  铝胺基钻井液在夏1031HF井的应用, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.02.012
    [15] 赵欣, 邱正松, 石秉忠, 林永学, 高书阳.  深水聚胺高性能钻井液试验研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.03.007
    [16] 赵欣欣, 吴雪峰, 高永海, 李昊, 郭艳利.  深水钻井防喷器温度场数值模拟研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.03.009
    [17] 王琳, 林永学, 杨小华, 蔡利山, 柴龙.  不同加重剂对超高密度钻井液性能的影响, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.03.010
    [18] 孙琦, 纪国栋, 汪海阁, 王灵碧, 崔猛.  极地钻井装备现状及发展趋势浅析, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.06.009
    [19] 夏环宇, 翟应虎, 安岩, 崔永兴.  深水钻井隔水管增压排量对井筒温度分布的影响, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.01.007
    [20] 邱正松, 谢彬强, 王在明, 沈忠厚.  超临界二氧化碳钻井流体关键技术研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.02.001
  • 加载中
图(13) / 表ll (1)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  104
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-02
  • 修回日期:  2021-03-31
  • 网络出版日期:  2021-05-11
  • 刊出日期:  2021-06-16

目录

    /

    返回文章
    返回