中国石化极地冷海钻井技术研究进展与发展建议

路保平 侯绪田 柯珂

路保平, 侯绪田, 柯珂. 中国石化极地冷海钻井技术研究进展与发展建议[J]. 石油钻探技术, 2021, 49(3): 1-10. doi: 10.11911/syztjs.2021046
引用本文: 路保平, 侯绪田, 柯珂. 中国石化极地冷海钻井技术研究进展与发展建议[J]. 石油钻探技术, 2021, 49(3): 1-10. doi: 10.11911/syztjs.2021046
LU Baoping, HOU Xutian, KE Ke. Achievements and Developing Suggestions of Sinopec’s Drilling Technologies in Arctic Sea[J]. Petroleum Drilling Techniques, 2021, 49(3): 1-10. doi: 10.11911/syztjs.2021046
Citation: LU Baoping, HOU Xutian, KE Ke. Achievements and Developing Suggestions of Sinopec’s Drilling Technologies in Arctic Sea[J]. Petroleum Drilling Techniques, 2021, 49(3): 1-10. doi: 10.11911/syztjs.2021046

中国石化极地冷海钻井技术研究进展与发展建议

doi: 10.11911/syztjs.2021046
基金项目: 国家重点研发计划项目“极地冷海钻井关键技术研究”(编号:2016YFC0303300)部分研究内容
详细信息
    作者简介:

    路保平(1962—),男,河北临城人,1982年毕业于华东石油学院钻井工程专业,2001年获石油大学(北京)油气井工程专业工学博士学位,正高级工程师,国家有突出贡献中青年专家,主要从事石油工程技术研究及相关管理工作。系本刊编委会主任。E-mail:lubp.sripe@sinopec.com

  • 中图分类号: TE249

Achievements and Developing Suggestions of Sinopec’s Drilling Technologies in Arctic Sea

  • 摘要: 北极油气资源丰富,但其低温、浅层灾害、冻土层、井筒处于大温变条件等地质、环境因素给钻井作业带来诸多挑战,为此,在“十三五”期间,中国石化以钻井安全环保高效为总目标,以解决钻井装备及工具、钻井工艺及措施、井筒工作流体的“冷”适应性问题为核心,进行了钻井灾害风险评价控制与环保、钻井关键装备及工具、钻井工艺与井筒工作液等关键技术研究,在浅层气、天然气水合物灾害地层的定量风险评价方法、–50 ℃低温轨道钻机及钻井工具、冻土层井壁稳定性评价与控制技术、低温钻井液与固井水泥浆等工程技术方面取得了重要进展,初步形成了极地冷海钻井关键技术体系。随着北极油气开发,陆地上将进入更高纬度、更厚永冻层区域,海洋上将向更深水域、常年冰或更厚浮冰海域进军,极地冷海钻井将面临更大的挑战,需要进一步完善极地冷海钻井完井技术理论与方法,研制新型钻井完井关键装备与工具,形成较为完善的极地冷海钻井完井技术体系,以满足北极地区油气藏高效勘探开发的需求,提升我国石油公司在极地油气合作项目中的经济效益和核心竞争力。
  • 图  1  浅层地质灾害声波特征识别模拟试验装置

    Figure  1.  Simulation system for the acoustic identification of shallow hazards

    图  2  浅层气与天然气水合物风险定量预测图版

    Figure  2.  Shallow gas and gas hydrate risk quantitative prediction chart

    图  3  螺杆钻具的基本结构

    1. 定子;2. 转子;3. 防掉杆;4. O形密封圈;5. 防掉接头;6. 防掉档盘;7. 防掉垫圈;8. 防松垫片;9. 防掉螺母

    Figure  3.  Basic structure of the PDM (Positive Displacement Motor)

    图  4  PDC轴承的基本结构

    Figure  4.  Basic structure of the PDC bearing

    图  5  低温岩石力学试验系统的基本组成

    1. 冷库;2. 轴压加载压头;3. 低温液压油;4. 橡胶套;5. 变形传感器;6. 冻土试样;7. 声波压头;8. 高压釜;9. 声波仪;10. 围压伺服系统;11. 温度传感器;12. 信息采集系统;13. 轴压伺服系统

    Figure  5.  Basic composition of the rock mechanics test system at a low temperature

    图  6  埋深600 m冻土抗压强度随围压和温度的变化曲线

    Figure  6.  Curves representing the compressive strength of (600 m deep) permafrost with confining pressure and temperature

    图  7  不同条件下井眼延伸极限预测图版

    Figure  7.  Prediction chart for borehole extension limits under different conditions

    图  8  低温早强固井水泥浆水化产物分析结果

    Figure  8.  Hydration products analysis of low-temperature early-strength cement slurry

    表  1  不同规格Q345E钢板–50 ℃下的冲击试验结果

    Table  1.   Impact test results of Q345E steel plates with different specifications at –50 °C

    序号材料冲击功/J结果
    1Q345E/-16277 279 287 合格
    2Q345E/-20887482合格
    3Q345E/-36248 231 209 合格
    4Q345E/-40346 2157合格
    5Q345E/-45402538合格
    6Q345E/200X160X16958680合格
    7Q345E/160X120X12171 134 158 合格
    GB/T 1591—2008和API 4F
    标准的参考值
    平均值27 J,单个值20 J
    下载: 导出CSV

    表  2  40CrNiMo合金钢采用不同热处理工艺后的低温冲击试验结果

    Table  2.   Low-temperature impact test results of 40CrNiMo alloy steel treated with different heat treatment processes

    序号材料抗拉强
    度/MPa
    屈服强
    度/MPa
    延伸率,
    %
    冲击功/
    J
    热处理工艺
    140CrNiMo10528861326A ℃淬火+
    560 ℃回火
    240CrNiMo10108681435B ℃淬火+
    585 ℃回火
    340CrNiMo9808501340A ℃淬火+
    600 ℃回火
    440CrNiMo9457601351B ℃淬火+
    620 ℃回火
    540CrNiMo9687701356C ℃淬火+
    635 ℃回火
    API 8C标准的
    参考值
    ≥820≥758≥12≥27
    下载: 导出CSV

    表  3  两种低温钻井液体系的常规性能

    Table  3.   Conventional performance of two low-temperature drilling fluid systems

    钻井液试验温度/℃表观黏度/(mPa·s)塑性黏度/(mPa·s)动切力/Paϕ6读数API滤失量/mL润滑系数pH值
    配方13026.016.010.067.20.1609
    1031.521.010.566.4
    041.524.017.575.6
    –10 50.531.019.574.4
    –25 70.044.026.093.0
    配方23032.521.011.587.20.0949
    444.528.516.094.4
    047.531.016.510 3.0
     注:配方1为–25~0 ℃低温钻井液体系;配方2为0~4 ℃低温钻井液体系;上述2种钻井液体系的密度均为1.15 kg/L。
    下载: 导出CSV
  • [1] 中华人民共和国国务院新闻办公室. 中国的北极政策[EB/OL].(2018-01-26)[2020-02-06]. http://www.scio.gov.cn/zfbps/32832/Document/1618203/1618203.htm.

    The state council information office of the People’s Republic of China.China’s Arctic policy[EB/OL]. (2018-01-26) [2020-02-06]. http://www.scio.gov.cn/zfbps/32832/Document/1618203/1618203.htm.
    [2] HAMILTON J M. The challenges of deep-water Arctic development[J]. International Journal of Offshore and Polar Engineering, 2011, 21(4): 241–247.
    [3] 余本善, 孙乃达.全球待发现油气资源分布及启示[J].中国矿业, 2015, 24(增刊1): 22-27.

    YU Benshan, SUN Naida. The distribution of global undiscovered hydrocarbon resources and enlightenment[J]. China Mining Magazine, 2015, 24(supplement 1): 22-27.
    [4] 李浩武,童晓光. 北极地区油气资源及勘探潜力分析[J]. 中国石油勘探,2010,15(3):73–82. doi:  10.3969/j.issn.1672-7703.2010.03.015

    LI Haowu, TONG Xiaoguang. Exploration potential analysis of oil and gas resources in Arctic regions[J]. China Petroleum Exploration, 2010, 15(3): 73–82. doi:  10.3969/j.issn.1672-7703.2010.03.015
    [5] 崔白露,王义桅. “一带一路”框架下的北极国际合作:逻辑与模式[J]. 同济大学学报(社会科学版),2018,29(2):48–58.

    CUI Bailu, WANG Yiwei. International cooperation on the Arctic under the Belt and Road Initiative: logics and models[J]. Journal of Tongji University (Social Science Section), 2018, 29(2): 48–58.
    [6] WHITEMAN G, HOPE C, WADHAMS P. Climate science: vast costs of Arctic change[J]. Nature, 2013, 499(7459): 401–403. doi:  10.1038/499401a
    [7] 路保平, 李国华.俄罗斯萨哈林海洋钻井总承包工程[M].东营: 中国石油大学出版社, 2009.

    LU Baoping, LI Guohua. Russia Sakhalin offshore drilling EPC project[M]. Dongying: China University of Petroleum Press, 2009.
    [8] 卢景美,邵滋军,房殿勇,等. 北极圈油气资源潜力分析[J]. 资源与产业,2010,12(4):29–33. doi:  10.3969/j.issn.1673-2464.2010.04.007

    LU Jingmei, SHAO Zijun, FANG Dianyong, et al. Analysis of oil-gas resources potential in the Arctic circle[J]. Resources & Industries, 2010, 12(4): 29–33. doi:  10.3969/j.issn.1673-2464.2010.04.007
    [9] 郭晓琼. 中俄经贸合作新进展及未来发展趋势[J]. 俄罗斯学刊,2016(3):10–18. doi:  10.3969/j.issn.2095-1094.2016.03.002

    GUO Xiaoqiong. New progress in economic and trade cooperation between China and Russia and the future development trend[J]. Academic Journal of Russian Studies, 2016(3): 10–18. doi:  10.3969/j.issn.2095-1094.2016.03.002
    [10] WINKLER M M. Frontier Arctic offshore exploration drilling business challenge[R]. OTC 29144, 2018.
    [11] Eurasia Group. Opportunities and challenges for Arctic oil and gas development[R]. OTC 24586, 2014.
    [12] SOUTHAM A L. the impact of non-technical risks on oil and gas activities in Alaska’s Arctic[R]. SPE 166811, 2013.
    [13] FEBBO E, PAYNE K, REEP B. Technology and innovation for environmental monitoring on Alaska’s North Slope[R]. SPE 184471, 2017.
    [14] SMITS C C, HUBER E. A social license to operate in the Arctic: exploring the challenges and opportunities for offshore oil and gas a ctivities in Greenland[R]. SPE 179343, 2016.
    [15] CHOU Q, MURTAZA M, MAMMADOV E, et al. Arctic drilling hazard identification relating to salt tectonics[R]. OTC 27396, 2016.
    [16] 党学博,李怀印. 北极海洋工程模式及关键技术装备进展[J]. 石油工程建设,2016,42(4):1–6. doi:  10.3969/j.issn.1001-2206.2016.04.001

    DANG Xuebo, LI Huaiyin. Offshore engineering modes and key technologies in Arctic[J]. Petroleum Engineering Construction, 2016, 42(4): 1–6. doi:  10.3969/j.issn.1001-2206.2016.04.001
    [17] 孙宝江. 北极深水钻井关键装备及发展展望[J]. 石油钻探技术,2013,41(3):7–12. doi:  10.3969/j.issn.1001-0890.2013.03.002

    SUN Baojiang. Progress and prospect of key equipment for Arctic deepwater drilling[J]. Petroleum Drilling Techniques, 2013, 41(3): 7–12. doi:  10.3969/j.issn.1001-0890.2013.03.002
    [18] LI Huaiyin, DANG Xuebo, ZHU Kai. Review and outlook on Arctic offshore facilities & technologies[R]. OTC 25541, 2015.
    [19] 杨进,路保平. 极地冷海钻井技术挑战及关键技术[J]. 石油钻探技术,2017,45(5):1–7.

    YANG Jin, LU Baoping. The challenges and key technologies of drilling in the cold water area of the Arctic[J]. Petroleum Drilling Techniques, 2017, 45(5): 1–7.
    [20] FENG Wen, JAMES B, CHEUNG T O, et al. Study on the material properties of aged steel exposed to the Arctic environment[R]. OTC 29161, 2018.
    [21] NEAL P, FELIPE M, JOHN E, et al. Shallow water subsea drilling and production structure to resist sand and ice keel intrusion in Arctic environments[R]. OTC 27440, 2016.
    [22] JI Guodong, WANG Haige, WANG Lingbi, et al. Current situation and development trend of Arctic drilling equipment[R]. ISOPE-I-13-184, 2013.
    [23] UTVIK T I, JAHRE-NILSEN C. The importance of early identification of safety and sustainability related risks in Arctic oil and gas operations[R]. SPE 179325, 2016.
    [24] TORSÆTER M, CERASI P. Mud-weight control during Arctic drilling operations[R]. OTC 25481, 2015.
    [25] XIE Jueren, MATTHEWS C M. Methodology to assess thaw subsidence impacts on the design and integrity of oil and gas wells in Arctic regions[R]. SPE 149740, 2011.
    [26] ANDREY B, GURBAN V, STANISLAV K, et al. Drilling with casing system continues successful drilling of permafrost sections in Arctic circle of Western Siberia (Russian Federation)[R]. OTC 24617, 2014.
    [27] 周波,杨进,张百灵,等. 海洋深水浅层地质灾害预测与控制技术[J]. 海洋地质前沿,2012,28(1):51–54.

    ZHOU Bo, YANG Jin, ZHANG Bailing, et al. Prediction and control technology of shallow geological hazards in deepwater area[J]. Marine Geology Frontiers, 2012, 28(1): 51–54.
    [28] 李莅临,杨进,路保平,等. 深水水合物试采过程中地层沉降及井口稳定性研究[J]. 石油钻探技术,2020,48(5):61–68. doi:  10.11911/syztjs.2020095

    LI Lilin, YANG Jin, LU Baoping, et al. Research on stratum settlement and wellhead stability in deep water during hydrate production testing[J]. Petroleum Drilling Techniques, 2020, 48(5): 61–68. doi:  10.11911/syztjs.2020095
    [29] 李鸿涛,陶平安,王志忠,等. ZJ40/2250DBG低温轨道钻井装备的研制[J]. 石油机械,2014,42(11):64–68. doi:  10.3969/j.issn.1001-4578.2014.11.016

    LI Hongtao, TAO Pingan, WANG Zhizhong, et al. Development of ZJ40 /2250DBG low-temperature track drilling rig[J]. China Petroleum Machinery, 2014, 42(11): 64–68. doi:  10.3969/j.issn.1001-4578.2014.11.016
    [30] KAMATOV K. Hybrid drill bit for horizontal drilling in highly interbedded formations of timano-pechora Arctic fields[R]. SPE 166841, 2013.
    [31] 高德利,黄文君,李鑫. 大位移井钻井延伸极限研究与工程设计方法[J]. 石油钻探技术,2019,47(3):1–8. doi:  10.11911/syztjs.2019069

    GAO Deli, HUANG Wenjun, LI Xin. Research on extension limits and engineering design methods for extended reach drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 1–8. doi:  10.11911/syztjs.2019069
    [32] 黄文君,石小磊,高德利. 基于钻井延伸极限的管柱分段优化设计方法[J]. 石油机械,2020,48(4):1–8.

    HUANG Wenjun, SHI Xiaolei, GAO Deli. Piecewise optimal design method of tubular strings based on extended-reach drilling limits[J]. China Petroleum Machinery, 2020, 48(4): 1–8.
    [33] CHEN Wei, SHEN Yuelin, CHEN Rongbing, et al. Simulating drillstring dynamics motion and post-buckling state with advanced transient dynamics model[J]. SPE Drilling & Completion, 2021: 1–15. doi:  https://doi.org/10.2118/199557-PA
    [34] BUI B T, TUTUNCU A N. A generalized rheological model for drilling fluids with cubic splines[J]. SPE Drilling & Completion, 2015, 31(1): 26–39.
    [35] MAHMOUD O, NASR-EL-DIN H A, VRYZAS Z, et al. Effect of ferric oxide nanoparticles on the properties of filter cake formed by calcium bentonite-based drilling muds[J]. SPE Drilling & Completion, 2018, 33(4): 363–376.
    [36] 刘华南.冻土层钻探低温泡沫冲洗液的研究[D].长春: 吉林大学, 2016.

    LIU Huanan. Research on low temperature foam flushing fluid used in frozen soil layer drilling[D]. Changchun: Jilin University, 2016.
    [37] WINKLER M M, JAHRE-NILSEN C. Arctic response technology JIP key achievements and final deliverables[R]. OTC 29120, 2018.
    [38] RAKHMANGULOV R, EVDOKIMOVA I, DOBROKHLEB P, et al. Entering the Arctic gate: high end drilling at the high latitude[R]. SPE 181922, 2016.
    [39] HASLING J F. Predicting the timing and duration of Arctic sea ice and its implications on future drilling seasons in the Chukchi Sea and Beaufort Sea[R]. OTC 27443, 2016.
    [40] EFIMOV Y O, KORNISHIN K A, SOCHNEV O Y, et al. Evaluation of exploration drilling scenarios in the southwestern part of the Kara Sea[R]. ISOPE-I-20-1272, 2020.
    [41] GUZENKO R B, MIRONOV Y U, KHARITONOV V V, et al. Complex study of large ice features and assessment of morphometric, physical-strength and age characteristics of a composite ice ridge[R]. ISOPE-I-20-1260, 2020.
    [42] ISRAEL R, McCRAE D, SPERRY N, et al. Delivering drilling automation II: novel automation platform and wired drill pipe deployed on Arctic drilling operations[R]. SPE 191574, 2018.
    [43] LAI S W, NG J, EDDY A, et al. Large-scale deployment of a closed-loop drilling optimization system: implementation and field results[J]. SPE Drilling and Completion, 2021, 36(1): 47–62. doi:  10.2118/199601-PA
    [44] WILSON A. Automated operations and wired drillpipe benefit Arctic drilling[J]. Journal of Petroleum Technology, 2019, 71(2): 62–64. doi:  10.2118/0219-0062-JPT
    [45] GOVINDU A, AHMED R, SHAH S, et al. The effect of inclination on the stability of foam systems in drilling and well operations[J]. SPE Drilling & Completion, 2020: 1–18. doi:  https://doi.org/10.2118/199821-PA
    [46] KINIK K, GUMUS F, OSAYANDE N. Automated dynamic well control with managed-pressure drilling: a case study and simulation analysis[J]. SPE Drilling & Completion, 2015, 30(2): 110–118.
    [47] STAVE R, FOSSLI B, ENDRESEN C, et al. Exploration drilling with riserless dual gradient technology in Arctic waters[R]. OTC 24588, 2014.
  • [1] 李燕, 胡志强, 薛玉志, 梁文龙, 唐文泉, 牛成成.  基于日费制管理模式的彬4井钻井关键技术, 石油钻探技术. doi: 10.11911/syztjs.2021133
    [2] 李中.  中国海油油气井工程数字化和智能化新进展与展望, 石油钻探技术. doi: 10.11911/syztjs.2022061
    [3] 刘红磊, 周林波, 陈作, 薄启炜, 马玉生.  中国石化页岩气电动压裂技术现状及发展建议, 石油钻探技术. doi: 10.11911/syztjs.2022100
    [4] 王涛, 刘锋报, 罗威, 晏智航, 陆海瑛, 郭斌.  塔里木油田防漏堵漏技术进展与发展建议, 石油钻探技术. doi: 10.11911/syztjs.2020080
    [5] 张锦宏.  中国石化页岩油工程技术现状与发展展望, 石油钻探技术. doi: 10.11911/syztjs.2021072
    [6] 蒋廷学, 王海涛.  中国石化页岩油水平井分段压裂技术现状与发展建议, 石油钻探技术. doi: 10.11911/syztjs.2021071
    [7] 路保平.  中国石化石油工程技术新进展与发展建议, 石油钻探技术. doi: 10.11911/syztjs.2021001
    [8] 袁光杰, 张弘, 金根泰, 夏焱.  我国地下储气库钻井完井技术现状与发展建议, 石油钻探技术. doi: 10.11911/syztjs.2020041
    [9] 丁士东, 赵向阳.  中国石化重点探区钻井完井技术新进展与发展建议, 石油钻探技术. doi: 10.11911/syztjs.2020069
    [10] 丁士东, 陶谦, 马兰荣.  中国石化固井技术进展及发展方向, 石油钻探技术. doi: 10.11911/syztjs.2019073
    [11] 王中华.  国内钻井液技术进展评述, 石油钻探技术. doi: 10.11911/syztjs.2019054
    [12] 张锦宏.  中国石化石油工程技术现状及发展建议, 石油钻探技术. doi: 10.11911/syztjs.2019061
    [13] 潘军, 刘卫东, 张金成.  涪陵页岩气田钻井工程技术进展与发展建议, 石油钻探技术. doi: 10.11911/syztjs.2018119
    [14] 路保平, 丁士东.  中国石化页岩气工程技术新进展与发展展望, 石油钻探技术. doi: 10.11911/syztjs.2018001
    [15] 马开华, 侯立中, 张洪宝.  中国石化海外油气田钻井完井技术现状与发展建议, 石油钻探技术. doi: 10.11911/syztjs.2018128
    [16] 韩来聚.  胜利油田钻井完井技术新进展及发展建议, 石油钻探技术. doi: 10.11911/syztjs.201701001
    [17] 李阳, 薛兆杰.  中国石化油气田开发工程技术面临的挑战与发展方向, 石油钻探技术. doi: 10.11911/syztjs.201601001
    [18] 杨智光.  大庆油田钻井完井技术新进展及发展建议, 石油钻探技术. doi: 10.11911/syztjs.201606001
    [19] 林永学, 王显光.  中国石化页岩气油基钻井液技术进展与思考, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.04.002
    [20] 闫光庆, 张金成.  中国石化超深井钻井技术现状与发展建议, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.02.001
  • 加载中
图(8) / 表ll (3)
计量
  • 文章访问数:  399
  • HTML全文浏览量:  259
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-04
  • 网络出版日期:  2021-05-14
  • 刊出日期:  2021-06-16

目录

    /

    返回文章
    返回