考虑应力敏感效应的裂缝性碳酸盐岩气井拟稳态产能预测方法

李江 陈先超 高平 舒成龙

李江, 陈先超, 高平, 舒成龙. 考虑应力敏感效应的裂缝性碳酸盐岩气井拟稳态产能预测方法[J]. 石油钻探技术, 2021, 49(3): 111-116. doi: 10.11911/syztjs.2021032
引用本文: 李江, 陈先超, 高平, 舒成龙. 考虑应力敏感效应的裂缝性碳酸盐岩气井拟稳态产能预测方法[J]. 石油钻探技术, 2021, 49(3): 111-116. doi: 10.11911/syztjs.2021032
LI Jiang, CHEN Xianchao, GAO Ping, SHU Chenglong. A Pseudo-Steady-State Productivity Prediction Method for Fractured Carbonate Gas Wells Considering Stress-Sensitivity Effects[J]. Petroleum Drilling Techniques, 2021, 49(3): 111-116. doi: 10.11911/syztjs.2021032
Citation: LI Jiang, CHEN Xianchao, GAO Ping, SHU Chenglong. A Pseudo-Steady-State Productivity Prediction Method for Fractured Carbonate Gas Wells Considering Stress-Sensitivity Effects[J]. Petroleum Drilling Techniques, 2021, 49(3): 111-116. doi: 10.11911/syztjs.2021032

考虑应力敏感效应的裂缝性碳酸盐岩气井拟稳态产能预测方法

doi: 10.11911/syztjs.2021032
基金项目: 国家自然科学基金青年科学基金项目“纳米颗粒吸附后强界面效应量化表征及多尺度流固耦合模拟理论研究”(编号:51804048)和油气藏地质及开发工程国家重点实验室开放基金课题“页岩气水平井体积压裂半解析产能预测方法及产能主控因素分析研究”(编号:PLC20180705)联合资助
详细信息
    作者简介:

    李江(1995—),男,四川泸州人,2019年毕业于成都理工大学石油工程专业,在读硕士研究生,主要从事非常规油气藏工程及数值模拟方面的研究。E-mail:jiang137988@163.com

    通讯作者:

    陈先超,chenxianchao2005@126.com

  • 中图分类号: TE32+8, TE371

A Pseudo-Steady-State Productivity Prediction Method for Fractured Carbonate Gas Wells Considering Stress-Sensitivity Effects

  • 摘要: 为了准确评价非达西效应和应力敏感效应对裂缝性碳酸盐岩气井产能的影响,建立了一种双重介质径向复合二项式产能综合模型。该模型分为内外2个区域,其中内区用于模拟气井经过压裂后的生产过程,并利用该产能模型计算了四川盆地某裂缝性碳酸盐岩气藏实例井的产能。计算结果表明,与一点法相比,新模型能更合理地预测裂缝性碳酸盐岩储层气井的绝对无阻流量,现场应用效果良好。参数敏感性分析表明,应力敏感因素主要影响气井生产后期;地层系数对气井的绝对无阻流量有较大的影响,地层渗透率和地层厚度越大,越有利于气井开发。综合考虑非达西效应和应力敏感效应的裂缝性碳酸盐岩气藏产能预测模型,为气藏的高效开发和合理配产提供了理论依据。
  • 图  1  双重介质两区径向复合模型

    Figure  1.  Dual-media model for radial compound reservoirs with two zones

    图  2  不同应力敏感系数下的IPR曲线

    Figure  2.  Inflow performance relation (IRP) curves under different stress sensitivity coefficients

    图  3  不同上覆岩层压力下的IPR曲线

    Figure  3.  IPR curves under different overburden pressures

    图  4  不同初始地层压力下的IPR曲线

    Figure  4.  IPR curves under different initial formation pressures

    图  5  不同地层系数下的IPR曲线

    Figure  5.  IPR curves under different formation coefficients

    表  1  不同产能模型的气井参数计算结果

    Table  1.   Calculation results of gas well parameters from different productivity models

    参数计算结果 参数计算结果
    模型1模型2 模型1模型2
    A73.814 472.864 9 B23.163 924.973 8
    A159.499 058.700 6A214.315 414.164 4
    B118.050 519.919 8B25.113 45.054 0
    D17.407 57.308 0D2634.887 5620.830 5
    E14.126×10–44.071×10–4E21.488×10–51.468×10–5
    F134.533 930.458 9F287.535 984.677 6
    G11.0827×10–21.0107×10–2G26.9299×1046.8679×104
     注:模型1为不考虑应力敏感的单区双重介质模型,模型2为考虑应力敏感双重介质两区径向复合模型。
    下载: 导出CSV

    表  2  不同产能模型计算结果对比

    Table  2.   Comparisons among calculation results from different productivity models

    产能模型无阻流量/
    (104m3·d–1
    与试井解释结果
    的相对误差,%
    一点法54.47–13.54
     不考虑应力敏感的单区径向复合模型81.6729.63
     不考虑应力敏感的两区径向复合模型75.4019.68
     考虑应力敏感的两区径向复合模型65.80 4.44
    下载: 导出CSV
  • [1] SMITH M B, BALE A, BRITT L K, et al. An investigation of non-Darcy flow effects on hydraulic fractured oil and gas well performance[R]. SPE 90864, 2004.
    [2] 张鹏,吴通,李中,等. BP神经网络法预测顺北超深碳酸盐岩储层应力敏感程度[J]. 石油钻采工艺,2020,42(5):622–626.

    ZHANG Peng, WU Tong, LI Zhong, et al. Application of BP neural network method to predict the stress sensitivity of ultra deep carbonate reservoir in Shunbei Oilfield[J]. Oil Drilling & Production Technology, 2020, 42(5): 622–626.
    [3] ZHANG Qi, SU Yuliang, WANG Wendong, et al. A new semi-analytical model for simulating the effectively stimulated volume of fractured wells in tight reservoirs[J]. Journal of Natural Gas Science and Engineering, 2015, 27(3): 1834–1845.
    [4] 陈军,刘太雷,任洪明. 考虑非达西流动影响的底水气藏产能新方法[J]. 特种油气藏,2019,26(2):91–95.

    CHEN Jun, LIU Tailei, REN Hongming. A new bottom-aquifer reservoir productivity equation based on non-darcy flow[J]. Special Oil & Gas Reservoirs , 2019, 26(2): 91–95.
    [5] 杨滨,姜汉桥,陈民锋,等. 应力敏感气藏产能方程研究[J]. 西南石油大学学报(自然科学版),2008,30(5):158–160.

    YANG Bin, JIANG Hanqiao, CHEN Minfeng, et al. Deliverability equation for stress-sensitive gas reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2008, 30(5): 158–160.
    [6] 温伟明,朱绍鹏,李茂. 海上异常高压气藏应力敏感特征及产能方程:以莺歌海盆地为例[J]. 天然气工业,2014,34(9):59–63.

    WEN Weiming, ZHU Shaopeng, LI Mao. Stress sensitivity features and productivity equations of offshore abnormal high-pressure gas reservoirs: a case study from the Yinggehai Basin[J]. Natural Gas Industry, 2014, 34(9): 59–63.
    [7] 邓佳,朱维耀,刘锦霞,等. 考虑应力敏感性的页岩气产能预测模型[J]. 天然气地球科学,2013,24(3):456–460, 638.

    DENG Jia, ZHU Weiyao, LIU Jingxia, et al. Productivity prediction model of shale gas considering stress sensitivity[J]. Natural Gas Geoscience, 2013, 24(3): 456–460, 638.
    [8] JIANG Liwu, LIU Tongjing, YANG Daoyong. Effect of stress-sensitive fracture conductivity on transient pressure behavior for a horizontal well with multistage fractures[J]. SPE Journal, 2019, 24(3): 1342–1363. doi:  10.2118/194509-PA
    [9] HUANG Shijun, DING Guangyang, WU Yonghui, et al. A semi-analytical model to evaluate productivity of shale gas wells with complex fracture networks[J]. Journal of Natural Gas Science & Engineering, 2018, 50: 374–383.
    [10] 黄天坤,王德龙,王丽影,等. 双重介质页岩气藏水平井压力动态特征[J]. 成都理工大学学报(自然科学版),2019,46(2):212–220.

    HUANG Tiankun, WANG Delong, WANG Liying, et al. Study on the pressure dynamic feature of horizontal wells in dual-porosity shale gas reservoir[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2019, 46(2): 212–220.
    [11] 姜瑞忠,原建伟,崔永正,等. 考虑岩石变形的页岩气藏双重介质数值模拟[J]. 油气地质与采收率,2019,26(4):70–76.

    JIANG Ruizhong, YUAN Jianwei, CUI Yongzheng, et al. Dual media numerical simulation of shale gas reservoirs considering rock deformation[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(4): 70–76.
    [12] 赵海洋,贾永禄,蔡明金,等. 低渗透双重介质垂直裂缝井产能分析[J]. 西南石油大学学报(自然科学版),2009,31(2):71–73.

    ZHAO Haiyang, JIA Yonglu, CAI Mingjin, et al. Deliverability analysis of vertical fracture wells in low permeability dual porosity reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(2): 71–73.
    [13] 蔡建超,郭士礼,游利军,等. 裂缝–孔隙型双重介质油藏渗吸机理的分形分析[J]. 物理学报,2013,62(1):220–224.

    CAI Jianchao, GUO Shili, YOU Lijun, et al. Fractal analysis of spontaneous imbibition mechanism in fractured-porous dual media reservoir[J]. Acta Physica Sinica, 2013, 62(1): 220–224.
    [14] XUE Yi, TENG Teng, DANG Faning, et al. Productivity analysis of fractured wells in reservoir of hydrogen and carbon based on dual-porosity medium model[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20240–20249. doi:  10.1016/j.ijhydene.2019.11.146
    [15] 王建忠,姚军,张凯,等. 变渗透率模量与双重孔隙介质的压力敏感性[J]. 中国石油大学学报(自然科学版),2010,34(3):80–83, 88.

    WANG Jianzhong, YAO Jun, ZHANG Kai, et al. Variable permeability modulus and pressure sensitivity of dual-porosity medium[J]. Journal of China University of Petroleum (Edition of Natural Science), 2010, 34(3): 80–83, 88.
    [16] WANG Wendong, FAN Dian, SHENG Guanglong, et al. A review of analytical and semi-analytical fluid flow models for ultra-tight hydrocarbon reservoirs[J]. Fuel, 2019, 256: 115737. doi:  10.1016/j.fuel.2019.115737
    [17] WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal, 1963, 3(3): 245–255. doi:  10.2118/426-PA
    [18] 高树生,刘华勋,任东,等. 缝洞型碳酸盐岩储层产能方程及其影响因素分析[J]. 天然气工业,2015,35(9):48–54.

    GAO Shusheng, LIU Huaxun, REN Dong, et al. Deliverability equation of fracture-cave carbonate reservoirs and its influential factors[J]. Natural Gas Industry, 2015, 35(9): 48–54.
    [19] 姜瑞忠,高岳,孙召勃,等. 双重介质低渗油藏偏心压裂直井井底压力特征[J]. 断块油气田,2020,27(6):778–783.

    JIANG Ruizhong, GAO Yue, SUN Zhaobo, et al. Bottom pressure characteristics for eccentric fracture vertical well in dual-medium low-permeability reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 778–783.
  • [1] 李虹, 于海洋, 杨海烽, 邓彤, 李旭, 吴阳.  裂缝性非均质致密储层自适应应力敏感性研究, 石油钻探技术. doi: 10.11911/syztjs.2022054
    [2] 吴柏志, 张怀兵.  满深1井碳酸盐岩地层自愈合水泥浆固井技术, 石油钻探技术. doi: 10.11911/syztjs.2020071
    [3] 王清辉, 朱明, 冯进, 管耀, 侯博恒.  基于渗透率合成技术的砂岩油藏产能预测方法, 石油钻探技术. doi: 10.11911/syztjs.2021122
    [4] 陈修平, 李双贵, 于洋, 周丹.  顺北油气田碳酸盐岩破碎性地层防塌钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.2020005
    [5] 刘利清, 刘培亮, 蒋林.  塔河油田碳酸盐岩缝洞型油藏量化注水开发技术, 石油钻探技术. doi: 10.11911/syztjs.2019122
    [6] 刘阳.  高温深层碳酸盐岩裸眼酸压完井封隔器研制与现场试验, 石油钻探技术. doi: 10.11911/syztjs.2020044
    [7] 游利军, 邵佳新, 高新平, 康毅力, 王福荣.  储气库注采过程中有效应力变化模拟试验, 石油钻探技术. doi: 10.11911/syztjs.2020102
    [8] 方俊伟, 张翼, 李双贵, 于培志, 李银婷.  顺北一区裂缝性碳酸盐岩储层抗高温可酸溶暂堵技术, 石油钻探技术. doi: 10.11911/syztjs.2020006
    [9] 田亚鹏, 鞠斌山, 胡杰.  考虑蒸汽超覆的稠油蒸汽吞吐产能预测模型, 石油钻探技术. doi: 10.11911/syztjs.2018028
    [10] 黄国平, 何世明, 汤明, 刘洋, 雷鸣.  顺南区块裂缝性储层置换式气侵影响因素研究, 石油钻探技术. doi: 10.11911/syztjs.2018125
    [11] 路保平, 鲍洪志, 余夫.  基于流体声速的碳酸盐岩地层孔隙压力求取方法, 石油钻探技术. doi: 10.11911/syztjs.201703001
    [12] 刘建坤, 蒋廷学, 周林波, 周珺, 吴峙颖, 吴沁轩.  碳酸盐岩储层多级交替酸压技术研究, 石油钻探技术. doi: 10.11911/syztjs.201701018
    [13] 杨金辉, 李立, 李钟洋, 鞠斌山.  滑脱和应力敏感效应对页岩气开发动态影响的数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.201701015
    [14] 刘礼军, 姚军, 孙海, 白玉湖, 徐兵祥, 陈岭.  考虑启动压力梯度和应力敏感的页岩油井产能分析, 石油钻探技术. doi: 10.11911/syztjs.201705015
    [15] 张君龙, 汪爱云, 何香香.  古城地区碳酸盐岩岩性及微相测井识别方法, 石油钻探技术. doi: 10.11911/syztjs.201603022
    [16] 方翔, 尚希涛, 王潇.  YD油田碳酸盐岩储层测井评价方法, 石油钻探技术. doi: 10.11911/syztjs.201503006
    [17] 余夫, 金衍, 陈勉, 卢运虎, 牛成成, 葛伟凤.  基于薄板理论的碳酸盐岩地层压力检测方法探讨, 石油钻探技术. doi: 10.11911/syztjs.201405010
    [18] 孙元伟, 程远方, 张矿生, 常鑫, 王怀栋.  考虑非达西效应的致密气藏裂缝参数优化设计, 石油钻探技术. doi: 10.11911/syztjs.201406017
    [19] 陈朝晖, 谢一婷, 邓勇.  疏松砂岩油藏出砂应力敏感实验研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.01.012
    [20] 熊健, 邱桃, 郭平, 魏斌.  非线性渗流下低渗气藏压裂井产能评价, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.03.019
  • 加载中
图(5) / 表ll (2)
计量
  • 文章访问数:  454
  • HTML全文浏览量:  169
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-31
  • 修回日期:  2021-03-04
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-06-16

目录

    /

    返回文章
    返回