考虑应力敏感效应的裂缝性碳酸盐岩气井拟稳态产能预测方法

李江, 陈先超, 高平, 舒成龙

李江, 陈先超, 高平, 舒成龙. 考虑应力敏感效应的裂缝性碳酸盐岩气井拟稳态产能预测方法[J]. 石油钻探技术, 2021, 49(3): 111-116. DOI: 10.11911/syztjs.2021032
引用本文: 李江, 陈先超, 高平, 舒成龙. 考虑应力敏感效应的裂缝性碳酸盐岩气井拟稳态产能预测方法[J]. 石油钻探技术, 2021, 49(3): 111-116. DOI: 10.11911/syztjs.2021032
LI Jiang, CHEN Xianchao, GAO Ping, SHU Chenglong. A Pseudo-Steady-State Productivity Prediction Method for Fractured Carbonate Gas Wells Considering Stress-Sensitivity Effects[J]. Petroleum Drilling Techniques, 2021, 49(3): 111-116. DOI: 10.11911/syztjs.2021032
Citation: LI Jiang, CHEN Xianchao, GAO Ping, SHU Chenglong. A Pseudo-Steady-State Productivity Prediction Method for Fractured Carbonate Gas Wells Considering Stress-Sensitivity Effects[J]. Petroleum Drilling Techniques, 2021, 49(3): 111-116. DOI: 10.11911/syztjs.2021032

考虑应力敏感效应的裂缝性碳酸盐岩气井拟稳态产能预测方法

基金项目: 国家自然科学基金青年科学基金项目“纳米颗粒吸附后强界面效应量化表征及多尺度流固耦合模拟理论研究”(编号:51804048)和油气藏地质及开发工程国家重点实验室开放基金课题“页岩气水平井体积压裂半解析产能预测方法及产能主控因素分析研究”(编号:PLC20180705)联合资助
详细信息
    作者简介:

    李江(1995—),男,四川泸州人,2019年毕业于成都理工大学石油工程专业,在读硕士研究生,主要从事非常规油气藏工程及数值模拟方面的研究。E-mail:jiang137988@163.com

    通讯作者:

    陈先超,chenxianchao2005@126.com

  • 中图分类号: TE32+8, TE371

A Pseudo-Steady-State Productivity Prediction Method for Fractured Carbonate Gas Wells Considering Stress-Sensitivity Effects

  • 摘要: 为了准确评价非达西效应和应力敏感效应对裂缝性碳酸盐岩气井产能的影响,建立了一种双重介质径向复合二项式产能综合模型。该模型分为内外2个区域,其中内区用于模拟气井经过压裂后的生产过程,并利用该产能模型计算了四川盆地某裂缝性碳酸盐岩气藏实例井的产能。计算结果表明,与一点法相比,新模型能更合理地预测裂缝性碳酸盐岩储层气井的绝对无阻流量,现场应用效果良好。参数敏感性分析表明,应力敏感因素主要影响气井生产后期;地层系数对气井的绝对无阻流量有较大的影响,地层渗透率和地层厚度越大,越有利于气井开发。综合考虑非达西效应和应力敏感效应的裂缝性碳酸盐岩气藏产能预测模型,为气藏的高效开发和合理配产提供了理论依据。
    Abstract: To accurately evaluate the impact of the non-Darcy and stress-sensitivity effects on the productivity of fractured carbonate gas wells, a new dual-media binomial productivity model for radial compound reservoirs was established. The model is divided into an inner zone and an outer zone, in which the inner zone is designed to simulate the production process of gas wells after fracturing treatment. The new model is used to calculate the productivity of a well in a fractured carbonate gas reservoir in the Sichuan Basin. The calculation results showed that the model can predict the absolute open flow of gas wells in fractured carbonate reservoirs more reasonably and has achieved better field application results than the one-point method. According to the parameter sensitivity analysis, stress sensitivity factors mainly influence the late production stage of gas wells, and the formation coefficient plays an important role in influencing the absolute open flow, which demonstrates that formations with higher permeability and thickness are more favorable to the development of gas wells. The productivity prediction model of fractured carbonate gas reservoirs, which comprehensively considers non-Darcy and stress-sensitive effects, can provide a theoretical basis for the efficient development and reasonable production allocation of gas reservoirs.
  • 胜利页岩油国家级示范区是我国首个陆相断陷盆地国家级页岩油示范区,储量达410×108 t左右[13]。2019年以来,相继在博兴、牛庄、民丰洼陷取得重大战略突破,多口页岩油井峰值日产油量超百吨,展现了良好的勘探开发前景[45]。然而,济阳坳陷页岩地层为新生界陆相沉积,地层压力系统复杂,平面、纵向非均质性强,储层埋藏深、温度高、夹层多,给钻井施工带来了极大的挑战[67]

    牛页一区为胜利页岩油主力区块,采用“平面上平行、纵向上多层交错”的多层系立体开发模式,以实现资源一次动用最大化,但此开发模式的定向钻井难度与邻井碰撞风险较大,且缺乏相关施工经验[810]。因此,为解决牛页一区试验井组三开井段地质工程条件复杂、井眼轨迹控制难度大和井下高温等难点,亟待开展页岩油旋转导向钻井技术研究。为此,笔者开展了旋转导向工具优选、三维井眼轨道优化及井眼轨迹控制、造斜率预测及修正、井温风险预测及管控等关键技术研究,建立了页岩油旋转导向钻井标准作业模式,并在牛页一区20口井进行了应用,机械钻速、单趟钻进尺与单井旋转导向进尺大幅提升,实现了长水平段一趟钻完成,为高效开发胜利页岩油提供了技术支持。

    胜利页岩油牛页一区地质工程条件复杂,面临储层埋藏深度大、非均质性强、地层压力系统复杂、地温梯度高、井眼轨迹控制难度大等技术难点[1112],具体表现为:

    1)地质条件复杂。受构造环境影响,胜利页岩油地层压力体系复杂、局部发育高压,钻井过程中易发生井涌、溢流、油气侵;目的层周边断层发育,地层倾角变化大,水平段追层调整幅度大,优质储层钻遇率提升难;目的层不规则发育条带状高灰质夹层、可钻性差,钻进中易造成旋转导向工具超限振动和钻头崩齿。

    2)井眼轨迹控制难度大。牛页一区4个平台共部署了20口开发井,具有“平面上平行、纵向上多层交错”的特征。立体“井工厂”开发模式易导致三维井眼轨道偏移距增大,增大了井眼轨道的复杂程度、中靶及长水平段井眼轨迹控制的难度,且多井密集也增大了邻井碰撞风险。

    3)井底温度高。牛页一区预测地温梯度约为3.6~4.0 ℃/100m,水平段井底平均温度高于150 ℃。井下高温对旋转导向系统的使用寿命及稳定性的影响较大,主要是对电路板及电子元器件的破坏,要求旋转导向工具和螺杆钻具具有良好的抗高温性能,否则极易引起旋转导向工具发生故障,影响钻井时效。

    旋转导向钻井系统是在钻柱旋转钻进的同时完成井眼轨迹导向控制的,全程保持高速旋转,无需滑动钻进,井眼平滑、井径规则,井眼质量高,为完井作业和后期压裂作业奠定良好基础,是开发页岩油气藏的钻井利器。

    由于立体“井工厂”三维水平井井眼轨迹控制难度大、邻井碰撞风险高,且泥页岩层长水平段滑动钻进时钻具极易发生粘卡、托压等现象。为此,选用旋转导向技术进行三开造斜段及水平段施工。

    牛页一区先后使用Geo-Pilot 7600系统和“经纬领航”系统进行定向钻井施工。施工过程中发现Geo-Pilot 7600系统托压较为严重,切向振动较高,平均机械钻速较低,且起下钻多次遇阻。研究发现,Geo-Pilot 7600系统长18.50 m,带有长4.00 m、外径194.0 mm的非旋转外套,有3个满眼稳定器,整体刚性较大,施工时岩屑返出程度较低,在井眼扩大率较小的牛页一区钻进中易发生托压问题。静态推靠式导向原理的“经纬领航”系统长11.50 m,带有长1.20 m、外径192.0 mm的非旋转外套,有1个满眼稳定器和长约4.50 m的柔性短节,整体刚性较小,施工时岩屑返出程度更高,对牛页一区的适应性更好。

    “经纬领航”系统与Geo-Pilot 7600系统在牛页一区的应用效果见表1。“经纬领航”系统和Geo-Pilot 7600系统均入井15趟,但经纬领航”系统总进尺多5 066.00 m,平均单趟钻进尺多337.74 m,平均机械钻速提高8.5%,说明“经纬领航”系统具有更好的稳定性、更高的破岩效率和更强的耐高温适应性,更适合于牛页一区施工作业。

    表  1  经纬领航系统与Geo-Pilot 7600系统应用效果对比
    Table  1.  Comparison of application effects between MatriNavi and Geo-Pilot 7600
    导向系统入井趟数进尺/m单趟钻进尺/m循环时间/h纯钻时间/h机械钻速/(m∙h−1最高循环温度/℃
    经纬领航1517 4421 162.802 088.141 167.414.94144
    Geo-Pilot 76001512 376825.061 884.50898.313.77138
    下载: 导出CSV 
    | 显示表格

    牛页一区三开下部地层为大段硬质泥岩、灰质夹层,可钻性差,钻头吃入困难、磨损快,破岩效率低。Geo-Pilot 7600系统与五刀翼、五水眼的史密斯SDi516钻头配套使用。SDi516钻头具有高内锥、短保径特征,适用于静态指向式旋转导向,兼顾了造斜能力与稳定性。

    “经纬领航”系统应用初期配套SDi516钻头,应用发现造斜能力与机械钻速均不理想,这是由于具有高内锥特性的PDC钻头,钻出井底的形状为凸”形,不适合静态推靠式旋转导向工具进行侧向切削造斜[13]。通过分析钻头的布齿、内锥角、保径长度,选用了TK56钻头。该钻头采用脱钴ION复合片技术,设计采用单排齿结构,具有较强攻击性,并可以兼顾振动控制能力。此外,该钻头还布置了3−2−3−2−3排布的倒划眼齿,为井下工具安全提供保障。“经纬领航”系统与TK56钻头和SDi516钻头配套的应用效果如表2所示,可以看出TK56钻头的造斜率、机械钻速与单趟钻进尺更具优势,分别提高了22%、14%和31%。因此,综合考虑造斜能力、攻击性与稳定性,确定牛页一区选用TK56钻头与“经纬领航”系统配套施工。

    表  2  “经纬领航”系统与TK56和SDi516钻头配套的应用效果
    Table  2.  Comparison of application effects between TK56 and SDi516 using MatriNavi
    钻头型号造斜率/
    ((°)∙(30m)−1
    机械钻速/(m∙h−1单趟钻进尺/m
    TK564.2515.331 179
    SDi5163.4813.44899
    下载: 导出CSV 
    | 显示表格

    牛页一区全部选用旋转导向专用的7头4.5级低速高扭螺杆,其最大输出扭矩可达19 kN·m,更适用于长度20 m左右的旋转导向底部钻具,低转速、高扭矩配比传动机构的性能更优,可稳定输出扭矩,确保高载荷下平稳运行,减少旋转导向底部钻具反扭矩的冲击。

    为了提升储层钻遇率与井眼轨迹控制效率,采用取地质−工程一体化模式协同优化井眼轨道,控制靶点的数量和位置,形成了“直—增—稳—增扭—增—平”的三维六段制轨道、动态A靶框、水平段轨迹控制窗的轨道设计方法[14]

    三维六段制轨道如图1所示,OA为直井段;AB为第一增斜段,采用铅垂面圆弧曲线进行设计;BC为稳斜段;CD为增斜扭方位段,要求在D点对准目标方位;DTA为第二增斜段,此时方位角已对准只需增斜中靶;TATB为水平段。设计思路是,将传统三维五段式轨道中第二个增斜扭方位的圆弧段拆分为三维增斜扭方位段与二维铅垂面上的增斜段,即先对准靶点方位再二维增斜中靶,可有效降低中靶难度,并且可提前预留调整空间,以便灵活控制井眼轨迹。为了保证牛页一区储层钻遇率,地质导向时一般会在大井斜段根据随钻伽马数据调整A靶垂深,若不预留调整空间,将无法保证储层钻遇率。

    图  1  三维六段制轨道示意
    Figure  1.  3D six-section trajectory

    动态A靶框以最优A靶点为圆心,以一定的设计半径(牛页一区为50 m)作为平面A靶框,实际A靶控制在动态A靶框内即可,以便于降低钻井难度、提高钻井速度。为解决水平段盲目追层导致的轨迹调整频繁、局部狗腿度较大的问题,水平段采用动态井眼轨迹控制窗[15]。首先根据夹层发育特征及构造特征设计一条最优轨道,然后根据压裂规模设计上下轨道控制线,水平段井眼轨迹控制在上下轨道控制线内即可,实现靶点追踪不停钻,既能保证储层钻遇率,又能减少井眼轨迹调整幅度和次数,从而达到提高钻井时效、降低施工难度的目的。

    基于纵横弯曲梁理论[1617],考虑“经纬领航”系统钻具的结构及工作原理,将推靠力视为集中力,在稳定器接触点处、柔性短节上下两端变截面处设置梁节点,将底部钻具划分为4个跨梁,构建了“经纬领航”旋转导向钻柱力学模型(见图2)。图2(b)中,F为导向力,N;W为钻压,N;L为梁结构长度,m;D为结构外径,m;d为结构内径,m。综合运用钻头−地层相互作用模型[18]与平衡趋势角法[19],形成“经纬领航”系统造斜率预测方法,预测流程如图3所示。

    图  2  “经纬领航”旋转导向钻具的结构及力学模型
    Figure  2.  Structure and mechanical model of MatriNavi rotary steerable drilling tool
    图  3  “经纬领航”旋转导向造斜率预测流程
    Figure  3.  Flow chart for build-up rate prediction by rotary steerable system using MatriNavi

    为了确定目标造斜率对应的所需导向力,采用该方法计算得到了导向力百分比与理论造斜率变化曲线,如图4所示。导向力百分比代表实际所用导向力与最大导向力的比值,“经纬领航”系统最大导向力为25 kN,即为100%导向力。然而,由于牛页一区断层发育、构造变化幅度大,导致理论造斜率与实钻井眼曲率会有一定偏差,影响了导向指令的准确性,需多次调整指令进行试钻,影响钻井时效。为此,建立了牛页一区关键层位不同机械钻速下的实钻曲率与导向力数据库,通过机器学习校正导向力−理论造斜率对应曲线,进而形成了牛页一区不同层位的导向力标准指令集(见表3),以便在控制井眼轨迹时,根据目标造斜率直接选用对应的导向力,减少反复调试指令造成的时效损失。

    图  4  理论造斜率随导向力百分比变化的曲线
    Figure  4.  Change in steering force percentage and theoretical build-up rate
    表  3  不同层位与机械钻速下的导向力标准指令集
    Table  3.  Standard instruction set for steering force at different layers and ROPs
    层位目标造斜率/
    ((°)∙(30m)−1
    不同钻速的导向力百分比,%
    10~15 m/h15~20 m/h>20 m/h
    沙三下4.0~4.521~2532~38
    4.5~5.032~3838~45
    5.0~6.040~4445~51
    >6.044~4851~57
    沙四纯上4.0~4.530~3432~3838~45
    4.5~5.032~3838~4245~48
    5.0~6.041~4851~5454~61
    >6.048~5254~58>63
    下载: 导出CSV 
    | 显示表格

    基于流体力学和传热学理论,采用有限元模拟与室内试验、现场实测相结合的方法,考虑储层物性、井眼轨迹、钻具组合、摩擦生热等地质和工程因素的影响,研究钻井液性能、循环参数对井底温度场时空演化规律的影响,形成了循环与停泵条件下的页岩油井下温度预测模型[20],用于钻前预测页岩油长水平段温度变化规律,计算流程如图5所示。

    图  5  页岩油井下温度预测流程
    Figure  5.  Temperature prediction under shale oil wells

    基于牛页一区4口已钻井实测井下温度数据,反演得到预测模型中的地层导热系数、流固边界对流换热系数,利用校验后的模型预测了后续4口井的随钻井下温度;NYX–803HF等4口井引入了降温设备,利用这4口井实测数据反演井下降温设备的最大降温能力,并预测了后续8口井的随钻井下温度,结果如图6所示。由图6可知,预测结果与随钻测试结果吻合较好,误差控制在5%~8%。可在钻前利用该方法有效预测井底温度,并根据预测结果优选不同耐温性能的“经纬领航”系统。若预测井底温度低于145 ℃,选用150 ℃常温型系统;若预测温度高于145 ℃,选用165 ℃高温型系统。

    图  6  牛页一区井底实测温度与预测温度对比
    Figure  6.  Comparison between measured and predicted temperatures at bottom of wells in Niuye Block I

    牛页一区引入“风冷+水冷”的地面降温装置,其采用清水喷洒在换热器盘管外表面形成均匀的水膜、受热后形成饱和温热蒸汽,空气由塔体下方的进风口进入塔内,喷淋水洒在换热管表面进行蒸发热交换,热量由风机排入大气层,从而实现全过程降温。引入降温装置后,循环温度平均可降低10~15 ℃,保证了旋转导向钻具可长时间在125~135 ℃温度下进行钻进,降低了工具因高温造成的不可逆损毁风险。

    旋转导向钻进中高温作业管控程序包括以下步骤:1)若实时温度达到125 ℃,需要开启降温设备,密切关注工具工作状态及温度上升速度;2)实时温度达到130 ℃以上时,每升高5 ℃,便需要在钻完一柱后划眼循环降温,直至实时循环温度稳定并降低2~3 ℃,其间可以上下活动钻具,尽量避免高转速旋转,严禁不开泵旋转工具;3)若提离井底循环45 min后温度仍无法降低或在恢复钻进10 min内温度又升至原温度,则认为温度无进一步降低空间,认可该温度并继续钻进;若不满足上述条件,则认为温度有进一步降低空间,返回步骤2);4)若钻具提离井底循环45 min温度仍无法降低或恢复钻进10 min内温度又升至150 ℃,必须停止作业,按照高温作业起钻程序进行起钻。

    牛页一区通过应用积累,细分工序流程,排查生产时效关键点,结合旋转导向工具优选、三维井眼轨道优化及井眼轨迹控制、造斜率预测及修正、高温风险预测及管控等关键技术,形成了页岩油旋转导向钻井标准作业模式,其中关键技术包括:

    1)钻前难点分析。一是借鉴邻井及前期施工井资料,分析区块地质与工程技术难点,增强工作的预见性、主动性和有效性;二是综合评价旋转导向系统入井时机和入井次数,算好“经济账”,确定旋转导向系统的使用时机。

    2)旋转导向及系统配套工具优选。一是选用“经纬领航”系统,其地层适应性好、造斜能力强,无额外压降要求,连续施工性能稳定;二是选用TK56钻头,其兼顾了造斜能力、攻击性与稳定性;三是选用7头4.5级低速高扭旋转导向专用螺杆,进一步提高工具的破岩能力。

    3)地质−工程一体化井眼轨迹控制。一是采用三维六段制轨道,降低中靶难度,提前预留调整空间,提高井眼轨迹控制的灵活性;二是基于随钻参数识别层位和井眼轨迹动态着陆,充分利用箱体厚度,优选“地质+工程”的双甜点层段,减少井眼轨迹调整次数;三是根据层位划分、层位机械钻速和井眼轨迹控制效果进行钻后一体化分析,总结单井施工经验,促进技术迭代提升。

    4)施工工序优化。一是综合待钻层位、机械钻速等因素,拟合导向力与井眼曲率的关系,形成导向力标准指令集,提升导向指令控制精度,提升井眼轨迹控制时效;二是优化指令下传工序,将指令下传工序与划眼工序结合,在划眼过程中完成指令下传;三是结合实钻情况优化改进测斜脉冲序列,缩短测斜工序等待时长。

    5)高温管控技术。一是利用页岩油井温预测方法,进行钻前长水平段高温风险预测,为旋转导向耐温系列工具优选提供依据;二是引入地面钻井液循环降温装置,循环温度达到125 ℃时开启,保证旋转导向工具长时间处于“舒适温度区间”,避免工具因高温过早失效;三是形成高温作业管控程序,保证钻井过程中井底温度不会急剧升高,降低电子元器件高温损坏风险,延长工具趟钻进尺。

    6)其他施工工艺。一是强化固控设备使用,降低劣质固相含量,保证井筒钻井液的性能,保持更好的携岩效果;二是按照钻井设备以及旋转导向工具的可耐受范围,尽可能将排量提至34~36 L/s施工,以保障井眼清洁程度尽可能最高,减少短起下钻次数;三是在振动管控允许前提下,使用更高的钻进参数,钻压100~120 kN,转速70~80 r/min+螺杆,以获得尽可能高的机械钻速。

    胜利页岩油牛页一区试验井组共完钻20口井,钻井施工可分为前期摸索、作业模式试验和标准作业模式推广等3个阶段。摸索阶段由于缺乏页岩油藏定向钻井施工经验,进行了各类技术组合的应用实践;试验阶段论证了不同旋转导向系统的适用性,选用了更适用的“经纬领航”旋转导向系统及配套工具;推广阶段进一步完善配套施工工艺,形成了旋转导向标准作业模式。不同阶段的现场应用情况如表4所示。

    表  4  不同阶段的现场应用效果对比
    Table  4.  Comparison of field application effects in different stages
    阶段 应用
    井数
    机械钻速/
    (m∙h−1
    单趟钻进尺/
    m
    单井进尺/
    m
    摸索阶段 12 13.79 862.11 1 220.50
    试验阶段 4 14.63 976.40 1 293.17
    推广阶段 4 15.52 1 345.43 2 354.50
    下载: 导出CSV 
    | 显示表格

    表4可知,页岩油旋转导向钻井标准作业模式推广阶段的机械钻速比前期摸索阶段提高了12.55%,单趟钻进尺提高了56.04%,单井旋转导向进尺提高了92.91%。此外,推广阶段的4口井中,NYX−501HF井、NYX−603HF井和NYX−302HF井等3口井实现了2 000 m长水平段一趟钻完成。其中,NYX–603HF井一趟钻进尺2 644 m,“经纬领航”旋转导向系统入井时间376.0 h,循环时间310.6 h,纯钻时间201.0 h,创该系统循环时间最长纪录。现场应用表明,旋转导向钻井标准作业模式能够有效提升机械钻速,大幅提升单趟钻进尺与单井旋转导向进尺,能有效保障牛页一区试验井组2 000 m长水平段一趟钻完成。

    1)针对胜利页岩油牛页一区旋转导向钻井技术难点,开展了旋转导向系统及配套工具优选、三维井眼轨道优化及井眼轨迹控制、造斜率预测及修正、井温风险预测与管控等技术的研究与应用探索,形成了页岩油旋转导向钻井标准作业模式。

    2)页岩油旋转导向钻井标准作业模式能够有效提升机械钻速、增大单趟钻进尺与单井进尺,牛页一区2 000 m长水平段一趟钻完成,实现了胜利济阳页岩油的高效开发。

    3)受济阳坳陷复杂地质工程条件影响,当前旋转导向钻井技术的针对性和适用性还存在一定不足,尚需进一步完善立体“井工厂”定向开发模式,建议开展耐温175 ℃旋转导向工具的研发、三维井眼轨迹闭环控制导向和远程智能控制等技术攻关,形成更为完善的胜利页岩油旋转导向钻井技术体系。

  • 图  1   双重介质两区径向复合模型

    Figure  1.   Dual-media model for radial compound reservoirs with two zones

    图  2   不同应力敏感系数下的IPR曲线

    Figure  2.   Inflow performance relation (IRP) curves under different stress sensitivity coefficients

    图  3   不同上覆岩层压力下的IPR曲线

    Figure  3.   IPR curves under different overburden pressures

    图  4   不同初始地层压力下的IPR曲线

    Figure  4.   IPR curves under different initial formation pressures

    图  5   不同地层系数下的IPR曲线

    Figure  5.   IPR curves under different formation coefficients

    表  1   不同产能模型的气井参数计算结果

    Table  1   Calculation results of gas well parameters from different productivity models

    参数计算结果 参数计算结果
    模型1模型2 模型1模型2
    A73.814 472.864 9 B23.163 924.973 8
    A159.499 058.700 6A214.315 414.164 4
    B118.050 519.919 8B25.113 45.054 0
    D17.407 57.308 0D2634.887 5620.830 5
    E14.126×10–44.071×10–4E21.488×10–51.468×10–5
    F134.533 930.458 9F287.535 984.677 6
    G11.0827×10–21.0107×10–2G26.9299×1046.8679×104
     注:模型1为不考虑应力敏感的单区双重介质模型,模型2为考虑应力敏感双重介质两区径向复合模型。
    下载: 导出CSV

    表  2   不同产能模型计算结果对比

    Table  2   Comparisons among calculation results from different productivity models

    产能模型无阻流量/
    (104m3·d–1
    与试井解释结果
    的相对误差,%
    一点法54.47–13.54
     不考虑应力敏感的单区径向复合模型81.6729.63
     不考虑应力敏感的两区径向复合模型75.4019.68
     考虑应力敏感的两区径向复合模型65.80 4.44
    下载: 导出CSV
  • [1]

    SMITH M B, BALE A, BRITT L K, et al. An investigation of non-Darcy flow effects on hydraulic fractured oil and gas well performance[R]. SPE 90864, 2004.

    [2] 张鹏,吴通,李中,等. BP神经网络法预测顺北超深碳酸盐岩储层应力敏感程度[J]. 石油钻采工艺,2020,42(5):622–626.

    ZHANG Peng, WU Tong, LI Zhong, et al. Application of BP neural network method to predict the stress sensitivity of ultra deep carbonate reservoir in Shunbei Oilfield[J]. Oil Drilling & Production Technology, 2020, 42(5): 622–626.

    [3]

    ZHANG Qi, SU Yuliang, WANG Wendong, et al. A new semi-analytical model for simulating the effectively stimulated volume of fractured wells in tight reservoirs[J]. Journal of Natural Gas Science and Engineering, 2015, 27(3): 1834–1845.

    [4] 陈军,刘太雷,任洪明. 考虑非达西流动影响的底水气藏产能新方法[J]. 特种油气藏,2019,26(2):91–95.

    CHEN Jun, LIU Tailei, REN Hongming. A new bottom-aquifer reservoir productivity equation based on non-darcy flow[J]. Special Oil & Gas Reservoirs , 2019, 26(2): 91–95.

    [5] 杨滨,姜汉桥,陈民锋,等. 应力敏感气藏产能方程研究[J]. 西南石油大学学报(自然科学版),2008,30(5):158–160.

    YANG Bin, JIANG Hanqiao, CHEN Minfeng, et al. Deliverability equation for stress-sensitive gas reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2008, 30(5): 158–160.

    [6] 温伟明,朱绍鹏,李茂. 海上异常高压气藏应力敏感特征及产能方程:以莺歌海盆地为例[J]. 天然气工业,2014,34(9):59–63.

    WEN Weiming, ZHU Shaopeng, LI Mao. Stress sensitivity features and productivity equations of offshore abnormal high-pressure gas reservoirs: a case study from the Yinggehai Basin[J]. Natural Gas Industry, 2014, 34(9): 59–63.

    [7] 邓佳,朱维耀,刘锦霞,等. 考虑应力敏感性的页岩气产能预测模型[J]. 天然气地球科学,2013,24(3):456–460, 638.

    DENG Jia, ZHU Weiyao, LIU Jingxia, et al. Productivity prediction model of shale gas considering stress sensitivity[J]. Natural Gas Geoscience, 2013, 24(3): 456–460, 638.

    [8]

    JIANG Liwu, LIU Tongjing, YANG Daoyong. Effect of stress-sensitive fracture conductivity on transient pressure behavior for a horizontal well with multistage fractures[J]. SPE Journal, 2019, 24(3): 1342–1363. doi: 10.2118/194509-PA

    [9]

    HUANG Shijun, DING Guangyang, WU Yonghui, et al. A semi-analytical model to evaluate productivity of shale gas wells with complex fracture networks[J]. Journal of Natural Gas Science & Engineering, 2018, 50: 374–383.

    [10] 黄天坤,王德龙,王丽影,等. 双重介质页岩气藏水平井压力动态特征[J]. 成都理工大学学报(自然科学版),2019,46(2):212–220.

    HUANG Tiankun, WANG Delong, WANG Liying, et al. Study on the pressure dynamic feature of horizontal wells in dual-porosity shale gas reservoir[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2019, 46(2): 212–220.

    [11] 姜瑞忠,原建伟,崔永正,等. 考虑岩石变形的页岩气藏双重介质数值模拟[J]. 油气地质与采收率,2019,26(4):70–76.

    JIANG Ruizhong, YUAN Jianwei, CUI Yongzheng, et al. Dual media numerical simulation of shale gas reservoirs considering rock deformation[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(4): 70–76.

    [12] 赵海洋,贾永禄,蔡明金,等. 低渗透双重介质垂直裂缝井产能分析[J]. 西南石油大学学报(自然科学版),2009,31(2):71–73.

    ZHAO Haiyang, JIA Yonglu, CAI Mingjin, et al. Deliverability analysis of vertical fracture wells in low permeability dual porosity reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(2): 71–73.

    [13] 蔡建超,郭士礼,游利军,等. 裂缝–孔隙型双重介质油藏渗吸机理的分形分析[J]. 物理学报,2013,62(1):220–224.

    CAI Jianchao, GUO Shili, YOU Lijun, et al. Fractal analysis of spontaneous imbibition mechanism in fractured-porous dual media reservoir[J]. Acta Physica Sinica, 2013, 62(1): 220–224.

    [14]

    XUE Yi, TENG Teng, DANG Faning, et al. Productivity analysis of fractured wells in reservoir of hydrogen and carbon based on dual-porosity medium model[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20240–20249. doi: 10.1016/j.ijhydene.2019.11.146

    [15] 王建忠,姚军,张凯,等. 变渗透率模量与双重孔隙介质的压力敏感性[J]. 中国石油大学学报(自然科学版),2010,34(3):80–83, 88.

    WANG Jianzhong, YAO Jun, ZHANG Kai, et al. Variable permeability modulus and pressure sensitivity of dual-porosity medium[J]. Journal of China University of Petroleum (Edition of Natural Science), 2010, 34(3): 80–83, 88.

    [16]

    WANG Wendong, FAN Dian, SHENG Guanglong, et al. A review of analytical and semi-analytical fluid flow models for ultra-tight hydrocarbon reservoirs[J]. Fuel, 2019, 256: 115737. doi: 10.1016/j.fuel.2019.115737

    [17]

    WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs[J]. Society of Petroleum Engineers Journal, 1963, 3(3): 245–255. doi: 10.2118/426-PA

    [18] 高树生,刘华勋,任东,等. 缝洞型碳酸盐岩储层产能方程及其影响因素分析[J]. 天然气工业,2015,35(9):48–54.

    GAO Shusheng, LIU Huaxun, REN Dong, et al. Deliverability equation of fracture-cave carbonate reservoirs and its influential factors[J]. Natural Gas Industry, 2015, 35(9): 48–54.

    [19] 姜瑞忠,高岳,孙召勃,等. 双重介质低渗油藏偏心压裂直井井底压力特征[J]. 断块油气田,2020,27(6):778–783.

    JIANG Ruizhong, GAO Yue, SUN Zhaobo, et al. Bottom pressure characteristics for eccentric fracture vertical well in dual-medium low-permeability reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 778–783.

图(5)  /  表(2)
计量
  • 文章访问数:  759
  • HTML全文浏览量:  366
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 修回日期:  2021-03-03
  • 网络出版日期:  2021-03-10
  • 刊出日期:  2021-06-15

目录

/

返回文章
返回