留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大港油田页岩油水平井钻井液技术

田增艳 杨贺卫 李晓涵 尹丽 王信 黄臣

田增艳, 杨贺卫, 李晓涵, 尹丽, 王信, 黄臣. 大港油田页岩油水平井钻井液技术[J]. 石油钻探技术, 2021, 49(4): 59-65. doi: 10.11911/syztjs.2021012
引用本文: 田增艳, 杨贺卫, 李晓涵, 尹丽, 王信, 黄臣. 大港油田页岩油水平井钻井液技术[J]. 石油钻探技术, 2021, 49(4): 59-65. doi: 10.11911/syztjs.2021012
TIAN Zengyan, YANG Hewei, LI Xiaohan, YIN Li, WANG Xin, HUANG Chen. Drilling Fluid Technology for Horizontal Shale Oil Wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 59-65. doi: 10.11911/syztjs.2021012
Citation: TIAN Zengyan, YANG Hewei, LI Xiaohan, YIN Li, WANG Xin, HUANG Chen. Drilling Fluid Technology for Horizontal Shale Oil Wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 59-65. doi: 10.11911/syztjs.2021012

大港油田页岩油水平井钻井液技术

doi: 10.11911/syztjs.2021012
基金项目: 天津市科技计划项目“非常规和深层油气资源开发钻井液关键技术研究”(编号:19PTSYJC00120)
详细信息
    作者简介:

    田增艳(1967—),女,天津人,1989年毕业于天津大学石油分校钻井工程专业,高级工程师,主要从事钻井液技术研究工作。E-mail:tianzy1994@163.com

  • 中图分类号: TE

Drilling Fluid Technology for Horizontal Shale Oil Wells in the Dagang Oilfield

  • 摘要: 针对大港油田沧东凹陷和歧口凹陷页岩油水平井水平段钻进过程中存在的井壁易失稳、井眼清洁效果差、摩阻和扭矩高等技术难点,在分析页岩油地层地质特征的基础上,制定了增强钻井液抑制性、封堵性和携岩性的技术对策,通过优选封堵剂、润滑剂等关键处理剂,形成了BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液。性能评价结果表明,BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液具有良好的抑制性能、携岩性能和封堵性能,能降低页岩渗透率,阻止压力传递,保证井壁稳定。大港油田36口页岩油水平井使用BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液钻进水平段,平均井径扩大率6.8%,未发生与钻井液有关的井下故障。这表明,BH-KSM-Shale和BH-WEI-Shale强抑制强封堵高性能水基钻井液能解决大港油田页岩油水平井水平段钻进过程中的技术难点,可为大港油田页岩油水平井钻井提供技术支撑。

     

  • 图 1  页岩地层岩样扫描电镜分析结果

    Figure 1.  SEM images of rock samples from shale formation

    图 2  页岩油水平井水基钻井液润滑性评价结果

    Figure 2.  Lubricities of the water-based drilling fluids used in horizontal shale oil wells

    图 3  人造岩心膨胀率曲线

    Figure 3.  Expansion rate curves of artificial cores

    图 4  页岩油水平井水基钻井液的压力传递试验曲线

    Figure 4.  Pressure transfer curves of the water-based drilling fluids used in horizontal shale oil wells

    表  1  页岩阳离子交换容量分析结果

    Table  1.   Results of cation exchange capacity (CEC) in shale

    岩样
    编号
    亚甲基蓝溶液
    消耗量/mL
    阳离子交换容量/
    (mmol·kg–1
    膨润土当量/
    (g·kg–1
    12.52535.71
    21.51521.43
    31.01014.29
    41.51521.43
    52.02028.57
    下载: 导出CSV

    表  2  页岩油水平井水基钻井液封堵性能评价结果

    Table  2.   Plugging results of the water-based drilling fluids used in horizontal shale oil wells

    配方砂盘渗
    透率/
    mD
    滤失量/mL封堵滤
    失量/
    mL
    静态滤
    失速率/
    (mL·min−1/2)
    1 min5 min7.5 min15 min25 min30 min
    34000.84.26.08.211.011.823.64.24
    20 0001.65.86.89.011.412.525.04.16
    44000.74.06.08.010.811.422.83.94
    20 0001.65.56.69.011.212.124.24.02
    54000.42.84.05.87.07.815.62.77
    20 0000.63.24.46.07.88.016.02.63
    64000.94.36.18.010.811.623.24.02
    20 0001.75.57.19.211.512.825.64.16
    74000.63.85.87.710.511.523.04.16
    20 0001.55.46.08.811.011.923.84.31
    84000.52.84.25.67.28.016.02.77
    20 0001.03.44.46.27.98.316.62.85
    注: 配方3为 配方1+3%BZ-FFT-I+3%BZ-DFT; 配方4为配方1+3%BZ-FFT-I+4%复合碳酸钙;配方5为配方1+3%BZ-FFT-I+2%BZ-DFT+4%复合碳酸钙;配方6为配方2+3%BZ-FFT-I+3%BZ-DFT;配方7为配方2+3%BZ-FFT-I+4%复合碳酸钙;配方8为配方2+3%BZ-FFT-I+2%BZ-DFT+4%复合碳酸钙。试验条件6.9 MPa,130 ℃。
    下载: 导出CSV

    表  3  页岩油水平井水基钻井液的基本性能

    Table  3.   Basic properties of the water-based drilling fluids used in horizontal shale oil wells

    钻井液测试条件密度/
    (kg·L–1
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    动塑比静切力/
    Pa
    API滤失量/
    mL
    pH值高温高压
    滤失量/mL
    BH-KSM-Shale老化前1.453713.50.363.5/8.02.08.5
    老化后1.453514.50.413.0/5.51.68.07.0
    BH-WEI-Shale老化前1.453916.00.414.0/9.02.29.0
    老化后1.454315.00.352.0/3.01.88.58.8
     注:老化条件在130 ℃下,滚动16 h,下同。
    下载: 导出CSV

    表  4  岩油水平井水基钻井液抗岩屑污染试验结果

    Table  4.   Resistance of the water-based drilling fluids used in horizontal shale oil wells to cutting pollution

    钻井液测试
    条件
    塑性
    黏度/
    (mPa·s)
    动切力/
    Pa
    静切力/
    Pa
    API滤
    失量/
    mL
    pH值高温
    高压滤
    失量/
    mL
    BH-KSM-Shale老化前2523.55.5/12.02.28.5
    老化后3524.54.0/7.52.08.08.4
    BH-WEI-Shale老化前2726.06.0/13.03.09.0
    老化后3322.05.0/7.51.88.58.0
    下载: 导出CSV

    表  5  部分应用井的钻井技术指标

    Table  5.   Drilling technical indicators in partial wells applied the water-based drilling fluids

    序号井号完钻井深/m水平段长/m钻井液井径扩大率,%钻井周期/d机械钻速/(m·h−1
    1GD1701H5 465.001 984.00BH-KSM-shale55.2113.26
    2GY1-1-4H4 650.001 108.93BH-KSM-shale92.4613.36
    3GY2-1-1H4 508.00 9 76.68BH-KSM-shale6.7456.2510.20
    4GY1-5-1H5 293.001 934.00BH-KSM-shale8.3170.3211.48
    5GY7-3-5H4 502.001 675.00BH-WEI-shale6.3019.8921.96
    6GY2-1-4H4 526.001 403.00BH-KSM-shale7.5525.0016.34
    7GY10-1-1H4 036.001 799.00BH-KSM-shale6.2134.0015.90
    8GY1-1-3H4 888.001 402.00BH-KSM-shale30.9612.19
    9GY1-1-2H5 166.001 750.00BH-KSM-shale7.2242.2113.42
    10GY1-1-9H5 806.001 980.13BH-KSM-shale6.5361.4613.55
    下载: 导出CSV

    表  6  GY1-1-9H井三开井段钻井液性能

    Table  6.   Properties of the drilling fluids in the third spud of Well GY1-1-9H

    井深/m密度/(kg·L–1漏斗黏度/s塑性黏度/(mPa·s)动切力/Pa动塑比静切力/PaAPI滤失量/mL高温高压滤失量/mL摩阻系数
    3 019.001.37413012.00.402.0/4.04.28.00.06
    3 769.001.48504217.00.402.5/5.03.87.20.08
    4 201.001.49573114.50.473.0/6.04.06.80.05
    4 623.001.51603115.00.483.5/6.03.67.40.06
    4 979.001.57644021.50.543.5/6.03.47.00.07
    5 472.001.59704825.00.524.5/6.53.26.60.08
    5 617.001.59654623.00.504.0/7.03.86.20.06
    5 806.001.59665023.50.475.0/7.53.67.00.06
    下载: 导出CSV
  • 胡文瑄,姚素平,陆现彩,等. 典型陆相页岩油油层系成岩过程中有机质演化对储集性的影响[J]. 石油与天然气地质,2019,40(5):947–956. doi: 10.11743/ogg20190501

    HU Wenxuan, YAO Suping, LU Xiancai, et al. Effects of organic matter evolution on oil reservoir property during diagenesis of typical continental shale sequences[J]. Oil and Gas Geology, 2019, 40(5): 947–956. doi: 10.11743/ogg20190501
    杜金虎, 李建忠, 郭彬程, 等. 中国陆相致密油[M]. 北京: 石油工业出版社, 2016.

    DU Jinhu, LI Jianzhong, Guo Bincheng, et al. Continental tight oil in China[M]. Beijing: Petroleum Industry Press, 2016.
    张宇,赵林,王炳红,等. 流-固-化-热耦合的陆相页岩井壁稳定力学模型及应用[J]. 特种油气藏,2019,26(3):163–168.

    ZHANG Yu, ZHAO Lin, WANG Binhong, et al. Fluid-solid-chemical-thermal coupling mechanical model of wellbore stability for continental shale and its application[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 163–168.
    林永学,甄剑武. 威远区块深层页岩气水平井水基钻井液技术[J]. 石油钻探技术,2019,47(2):21–27. doi: 10.11911/syztjs.2019022

    LIN Yongxue, ZHEN Jianwu. Research and application of deep shale gas water based drilling fluid technology[J]. Petroleum Drilling Techniques, 2019, 47(2): 21–27. doi: 10.11911/syztjs.2019022
    彭君,周勇水,李红磊,等. 渤海湾盆地东濮凹陷盐间细粒沉积岩岩相与含油性特征[J]. 断块油气田,2021,28(2):10–18.

    PENG Jun, ZHOU Yongshui, LI Honglei, et al. Lithofacies and oil-bearing characteristics of fine-grained sedimentary rocks of salt-layers in Dongpu Sag, Bohai Bay Basin[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 10–18.
    杨绍存,李长洪,施宝海,等. 大港油田页岩油水平井地质导向技术研究与应用:以GD区块GD 2H井为例[J]. 录井工程,2018,29(4):24–28. doi: 10.3969/j.issn.1672-9803.2018.04.005

    YANG Shaocun, LI Changhong, SHI Baohai, et al. Application of geosteering technology for shale oil horizontal wells in Dagang Oilfield: a case study on GD 2H Well in GD Block[J]. Mud Logging Engineering, 2018, 29(4): 24–28. doi: 10.3969/j.issn.1672-9803.2018.04.005
    刘毅. 渤海湾盆地济阳坳陷沙河街组页岩油储层特征研究[D]. 成都: 成都理工大学, 2018.

    LIU Yi. Study on shale oil reservoir characteristics of shahejie formation in Jiyang depression, Bohai Bay Basin[D]. Chengdu: Chengdu University of Technology, 2018.
    李克向. 保护油气层钻井完井技术[M]. 北京: 石油工业出版社, 1993.

    LI Kexiang. Drilling and completion technology for protecting oil and gas reservoir[M]. Beijing: Petroleum Industry Press, 1993.
    张君峰,毕海滨,许浩,等. 国外致密油勘探开发新进展及借鉴意义[J]. 石油学报,2015,36(2):127–137. doi: 10.7623/syxb201502001

    ZHANG Junfeng, BI Haibin, XU Hao, et al. New progress and reference significance of overseas tight oil exploration and development[J]. Acta Petrolei Sinica, 2015, 36(2): 127–137. doi: 10.7623/syxb201502001
    闫林,陈福利,王志平,等. 我国页岩油有效开发面临的挑战及关键技术研究[J]. 石油钻探技术,2020,48(3):63–69. doi: 10.11911/syztjs.2020058

    YAN Lin, CHEN Fuli, WANG Zhiping, et al. Challenges and technical countermeasures for effective development of shale oil in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 63–69. doi: 10.11911/syztjs.2020058
    罗诚,吴婷,朱哲显. 硬脆性泥页岩井壁稳定性研究[J]. 西部探矿工程,2013,25(6):50–52. doi: 10.3969/j.issn.1004-5716.2013.06.017

    LUO Cheng, WU Ting, ZHU Zhexian. Study on the wellbore stability of hard brittle shale[J]. West-China Exploration Engineering, 2013, 25(6): 50–52. doi: 10.3969/j.issn.1004-5716.2013.06.017
    李栓,张家义,秦博,等. BH-KSM钻井液在冀东油田南堡3号构造的应用[J]. 钻井液与完井液,2015,32(2):93–96. doi: 10.3969/j.issn.1001-5620.2015.02.025

    LI Shuan, ZHANG Jiayi, QIN Bo, et al. Application of BH-KSM drilling fluid in Nanpu 3 Structure of Jidong Oilfied[J]. Drilling Fluid & Completion Fluid, 2015, 32(2): 93–96. doi: 10.3969/j.issn.1001-5620.2015.02.025
    王信,张民立,庄伟,等. 高密度水基钻井液在小井眼水平井中的应用[J]. 钻井液与完井液,2019,36(1):65–69. doi: 10.3969/j.issn.1001-5620.2019.01.013

    WANG Xin, ZHANG Minli, ZHUANG Wei, et al. Application of high density water based drilling fluid system in horizontal slim hole drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(1): 65–69. doi: 10.3969/j.issn.1001-5620.2019.01.013
    王伟吉. 基于石墨烯修饰的超低渗透成膜剂制备及性能评价[J]. 石油钻探技术,2021,49(1):59–66.

    WANG Weiji. Preparation and performance evaluations of an ultra-low permeability film-forming agent based on graphene modification[J]. Petroleum Drilling Techniques, 2021, 49(1): 59–66.
    杨灿,董超,饶开波,等. 官东1701H页岩油长水平井激进式水力参数设计[J]. 西部探矿工程,2019,31(3):24–26.

    YANG Can, DONG Chao, RAO Kaibo, et al. Guandong 1701H shale oil long horizontal well radical hydraulic parameter design western exploration project[J]. West-China Exploration Engineering, 2019, 31(3): 24–26.
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  211
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-10
  • 修回日期:  2021-06-05
  • 网络出版日期:  2021-07-14
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回