四川盆地茅口组岩溶缝洞型储层有效性测井评价

张峰 罗少成 李震 牟瑜 李婷婷

张峰, 罗少成, 李震, 牟瑜, 李婷婷. 四川盆地茅口组岩溶缝洞型储层有效性测井评价[J]. 石油钻探技术, 2020, 48(6): 116-122. doi: 10.11911/syztjs.2020140
引用本文: 张峰, 罗少成, 李震, 牟瑜, 李婷婷. 四川盆地茅口组岩溶缝洞型储层有效性测井评价[J]. 石油钻探技术, 2020, 48(6): 116-122. doi: 10.11911/syztjs.2020140
ZHANG Feng, LUO Shaocheng, LI Zhen, MU Yu, LI Tingting. Logging Evaluation on the Effectiveness of Karst Fractured-Vuggy Reservoirs in the Maokou Formation, Sichuan Basin[J]. Petroleum Drilling Techniques, 2020, 48(6): 116-122. doi: 10.11911/syztjs.2020140
Citation: ZHANG Feng, LUO Shaocheng, LI Zhen, MU Yu, LI Tingting. Logging Evaluation on the Effectiveness of Karst Fractured-Vuggy Reservoirs in the Maokou Formation, Sichuan Basin[J]. Petroleum Drilling Techniques, 2020, 48(6): 116-122. doi: 10.11911/syztjs.2020140

四川盆地茅口组岩溶缝洞型储层有效性测井评价

doi: 10.11911/syztjs.2020140
基金项目: 中国石油天然气集团有限公司科学研究与技术开发项目“非均质复杂储层测井新技术新方法研究”(编号:2019A-3610)部分研究内容
详细信息
    作者简介:

    张峰(1981—),女,陕西西安人,2006年毕业于辽宁大学环境科学专业,2011年获西安石油大学矿产普查与勘探专业硕士学位,工程师,主要从事测井评价工作。E-mail:delight0816@126.com

  • 中图分类号: TE122.2+3

Logging Evaluation on the Effectiveness of Karst Fractured-Vuggy Reservoirs in the Maokou Formation, Sichuan Basin

  • 摘要: 针对四川盆地茅口组碳酸盐岩储层非均质性强、储集空间类型多样、储层有效性评价困难等问题,进行了测井评价研究。通过分析该地区茅口组缝洞型储层岩石孔隙结构,基于三孔隙度模型,利用胶结指数与总孔隙度、连通缝洞孔隙度、孤立缝洞孔隙度的关系,进行了储层储集空间划分。在此基础上,结合岩心刻度测井,在微电阻率扫描成像测井信息中提取视孔隙度谱和视地层水电阻率谱的均值与方差,以及裂缝孔隙度等反应孔、洞、缝的敏感性参数,并结合试气资料,建立了储层有效性评价标准:孔隙性、孔洞型储层,电成像视孔隙度谱均值大于1.9、方差大于1.2的为Ⅰ类储层,均值大于1.7、方差大于0.9的为Ⅱ类储层;裂缝性储层,Ⅰ类储层裂缝孔隙度大于0.30,Ⅱ类储层裂缝孔隙度在0.05~0.30。裂缝的连通会明显改善储层的有效性,针对孔隙性–裂缝性、孔洞型–裂缝性储层,Ⅰ类储层视地层水电阻率谱均值大于700、方差大于300,Ⅱ类储层视地层水电阻率谱均值500~700,方差100~300。依据该评价标准,对该地区20口探井进行了二次解释,有效提高了缝洞型储层解释的符合率,取得了较好的应用效果。
  • 图  1  mb=2.0时的三孔隙度模型ϕm交会图

    Figure  1.  ϕm cross plot of tri-porosity model when mb=2.0

    图  2  裂缝孔隙度计算模型

    Figure  2.  Fracture porosity calculation model

    图  3  南X井5 045.00~5 065.00 m井段电成像解释综合成果

    Figure  3.  Comprehensive results of electric imaging interpretation of 5 045.00–5 065.00 m section in Well Nan X

    表  1  四川盆地茅口组碳酸盐岩不同类型储层的测井响应特征

    Table  1.   Logging response characteristics of different types of carbonate reservoirs in the Maokou Formation,Sichuan Basin

    储层类型测井响应特征胶结指数举例
    双侧向声波密度补偿中子电成像图像模式
    孔隙性、孔洞型箱状降低中高点−斑状m>2.0高X井茅三段
    环X井茅三段
    裂缝性
    (水平缝及低角度缝)
    整体较高,局部
    出现刺刀状降低
    不明显不明显线状m<2.0资X井茅三段
    磨X井茅二段
    取决于裂缝开度天X-x1井茅二段
    裂缝性(高角度缝)整体较低、低侵不明显不明显线状m>2.0龙X井茅三段
    大X井茅二段
    取决于裂缝
    开度及角度
    龙X井茅二段
    孔洞型–裂缝性降低、低侵线斑状1.6<m<2.0立X井茅三段
    资X井茅二段
    孔隙性–裂缝性降低、低侵线点状1.6<m<2.0矿X井茅三段
    下载: 导出CSV

    表  2  部分探井裂缝发育分级量化结果

    Table  2.   Quantitative results of fracture development classification of some exploration wells

    井号岩性特征裂缝发
    育程度
    裂缝
    孔隙度
    储层
    分类
    双X 5 396.50~5 397.00 m井段,粉晶灰岩,致密,裂缝不发育不发育0
    大X2 5 482.20~5 283.00 m井段,粉晶灰岩,发育不规则裂缝1条、溶洞1个较发育0.005
    双X 5 570.60~5 571.10 m井段,粉晶灰岩,致密不发育0
    华X 4 632.20~4 632.80 m井段,粉晶灰岩,致密;斜裂缝3条,被黄铁矿、泥质半充填发育0.030
    大X3 5 889.20~5 889.90 m井段,粉晶灰岩,致密,微裂缝纵向极为发育较发育0.007
    潼X 4 321.00~4 321.50 m井段,粉晶灰岩,致密,裂缝、微裂缝较发育,发育溶洞12个,发育半充填微细裂缝发育0.040
    潼X 4 355.50~4 356.10 m井段,粉晶灰岩,致密,裂缝、微裂缝纵向极为发育,见溶洞5个发育0.070
    大X3 6 021.20~6 021.80 m井段,粉晶灰岩,致密,见网状裂缝较发育0.010
    下载: 导出CSV

    表  3  储层有效性评价标准

    Table  3.   Evaluation standard of reservoir effectiveness

    储层
    分类
    裂缝发育
    程度
    储集空间
    类型
    裂缝
    孔隙度
    视地层水
    电阻率谱均值
    视地层水
    电阻率谱方差
    视孔隙度
    谱均值
    视孔隙度
    谱方差
    胶结指数
    裂缝发育裂缝性、孔洞型−裂缝性>0.3>700>300>1.9>1.22.0>m>1.6
    裂缝较发育裂缝性、孔隙性−裂缝性0~0.3500~700100~3001.7~1.90.9~1.2
    裂缝不发育孔隙性−孔洞型、孔洞型02.2>m>2.0
    致密层孔隙性0<500<200<1.0<0.8m>2.2
    下载: 导出CSV
  • [1] 陈维涛,周瑶琪,马永生,等. 关于龙门山地区东吴运动的存在及其性质的认识[J]. 地质学报, 2007, 81(11): 1518–1525. doi:  10.3321/j.issn:0001-5717.2007.11.006

    CHEN Weitao, ZHOU Yaoqi, MA Yongsheng, et al. The knowledge on the existence and nature of the dongwu movement in the Longmen Mountain Area[J]. Acta Geologica Sinica, 2007, 81(11): 1518–1525. doi:  10.3321/j.issn:0001-5717.2007.11.006
    [2] 朱传庆,徐明,袁玉松,等. 峨眉山玄武岩喷发在四川盆地的地热学响应[J]. 科学通报, 2010, 55(6): 474–482.

    ZHU Chuanqing, XU Ming, YUAN Yusong, et al. Geothermal response of Emeishan basalt eruption in Sichuan Basin[J]. Science Bulletin, 2010, 55(6): 474–482.
    [3] 梁定益,聂泽同,宋志敏. 扬子西缘东吴伸展运动[J]. 地球科学——中国地质大学学报, 1994, 19(4): 443–452.

    LIANG Dingyi, NIE Zetong, SONG Zhimin. Extensional Dongwu movement in western margin of Yangtze region[J]. Earth Science—Journal of China University of Geosciences, 1994, 19(4): 443–452.
    [4] 何斌,徐义刚,王雅玫,等. 东吴运动性质的厘定及其时空演变规律[J]. 地球科学——中国地质大学学报, 2005, 30(1): 89–96.

    HE Bin, XU Yigang, WANG Yamei, et al. Nature of the Dongwu Movement and its temporal and spatial evolution[J]. Earth Science—Journal of China University of Geosciences, 2005, 30(1): 89–96.
    [5] 陈更生,岳宏. 四川盆地川西南地区下二叠统气藏类型及有效缝洞分布规律[J]. 天然气工业, 1995, 15(6): 10–13.

    CHEN Gengsheng, YUE Hong. Gas reservoir types and effective fracture-vug distribution laws of lower permian series in the southwest area of Sichuan Basin[J]. Natural Gas Industry, 1995, 15(6): 10–13.
    [6] 颜其彬,庞雯. 川南茅口灰岩岩溶特征与油气关系[J]. 西南石油学院学报, 1993, 15(3): 11–16.

    YAN Qibin, PANG Wen. Relationship between oil/gas accumulaition and karst features of Maokou formation in Luzhou area, Sichuan[J]. Journal of Southwest Petroleum Institute, 1993, 15(3): 11–16.
    [7] 江青春,胡素云,汪泽成,等. 四川盆地茅口组风化壳岩溶古地貌及勘探选区[J]. 石油学报, 2012, 33(6): 949–960. doi:  10.7623/syxb201206005

    JIANG Qingchun, HU Suyun, WANG Zecheng, et al. Paleokarst landform of the weathering crust of middle permian Maokou formation in Sichuan Basin and selection of exploration regions[J]. Acta Petrolei Sinica, 2012, 33(6): 949–960. doi:  10.7623/syxb201206005
    [8] 郑荣才,胡忠贵,冯青平,等. 川东北地区长兴组白云岩储层的成因研究[J]. 矿物岩石, 2007, 27(4): 78–84. doi:  10.3969/j.issn.1001-6872.2007.04.013

    ZHENG Rongcai, HU Zhonggui, FENG Qingping, et al. Genesis of dolomite reservoir of the Changxing Formation of upper permian, northeast Sichuan Basin[J]. Journal of Mineralogy and Petrology, 2007, 27(4): 78–84. doi:  10.3969/j.issn.1001-6872.2007.04.013
    [9] 田瀚,杨敏. 碳酸盐岩缝洞型储层测井评价方法[J]. 物探与化探, 2015, 39(3): 545–552. doi:  10.11720/wtyht.2015.3.18

    TIAN Han, YANG Min. The logging evaluation methods for fractured-vuggy carbonate reservoirs[J]. Geophysical and Geochemical Exploration, 2015, 39(3): 545–552. doi:  10.11720/wtyht.2015.3.18
    [10] 张欣, 尚锁贵, 张国强, 等.基于多资料的砂砾岩储层有效性精细评价[J].石油钻采工艺, 2018, 40(增刊1): 70–72, 83.

    ZHANG Xin, SHANG Suogui, ZHANG Guoqiang, et al. Fine evaluation on the effectiveness of glutenite reservoirs based on diverse data[J].Oil Drilling & Production Technology, 2018, 40(supplement 1): 70–72, 83.
    [11] 刘伟,张晋言,张文娇,等. 基于电成像测井资料的砂砾岩储层有效性分类评价方法[J]. 石油钻探技术, 2016, 44(4): 114–119.

    LIU Wei,ZHANG Jinyan,ZHANG Wenjiao,et al. An evaluation method for glutenite reservoir effectiveness classification based on electrical imaging logging data[J]. Petroleum Drilling Techniques, 2016, 44(4): 114–119.
    [12] 王亮,司马立强,谢兵,等. 龙岗地区雷口坡组复杂碳酸盐岩储层有效性评价[J]. 特种油气藏, 2011, 18(5): 37–40.

    WANG Liang,SIMA Liqiang,XIE Bing,et al. Effectiveness evaluation of the complex carbonate reservoir in the Leikoupo Formation of Longgang Area[J]. Special Oil & Gas Reservoirs, 2011, 18(5): 37–40.
    [13] 耿斌,胡心红. 孔隙结构研究在低渗透储层有效性评价中的应用[J]. 断块油气田, 2011, 18(2): 187–190.

    GENG Bin, HU Xinhong. Application of pore structure study in effectiveness evaluation of low permeability reservoir[J]. Fault-Block Oil & Gas Field, 2011, 18(2): 187–190.
    [14] ROBERTO A F, AGUILERA R. A triple porosity model for petrophysical analysis of naturally fractured reservoir[J]. Petrophysics, 2004, 45(2): 157–166.
    [15] AL-GHAMDI A, CHEN B, BEHMANESH H, et al. An improved tripe-porosity model for evaluation of naturally fractured reservoirs[R]. SPE 132879, 2010.
    [16] 田瀚,沈安江,张建勇,等. 一种缝洞型碳酸盐岩储层胶结指数m计算新方法[J]. 地球物理学报, 2019, 62(6): 2276–2285. doi:  10.6038/cjg2019L0633

    TIAN Han, SHEN Anjiang, ZHANG Jianyong, et al. A new method for calculating the cementation index m of fracture cave carbonate reservoir[J]. Chinese Journal of Geophysics, 2019, 62(6): 2276–2285. doi:  10.6038/cjg2019L0633
    [17] 曹毅民,章成广,杨维英,等. 裂缝性储层电成像测井孔隙度定量评价方法研究[J]. 测井技术, 2006, 30(3): 237–239. doi:  10.3969/j.issn.1004-1338.2006.03.015

    CAO Yimin, ZHANG Chengguang, YANG Weiying, et al. Fractured reservoir porosity quantitative evaluation using electric imaging logging data[J]. Well Logging Technology, 2006, 30(3): 237–239. doi:  10.3969/j.issn.1004-1338.2006.03.015
    [18] FU Haicheng, ZOU Changchun, LI Ning, et al. A quantitative approach to characterize porosity structure from borehole electrical images and its application in a carbonate reservoir in the Tazhong Area, Tarim Basin[J]. SPE Reservoir Evaluation & Engineering, 2016, 19(1): 18–23.
    [19] TYAGI A K, BHADURI A. Porosity analysis using borehole electrical images in carbonate reservoirs[R]. SPWLA-2002-KK, 2002.
    [20] 李宁,肖承文,伍丽红,等. 复杂碳酸盐岩储层测井评价: 中国的创新与发展[J]. 测井技术, 2014, 38(1): 1–10.

    LI Ning, XIAO Chengwen, WU Lihong, et al. The innovation and development of log evaluation for complex carbonate reservoir in China[J]. Well Logging Technology, 2014, 38(1): 1–10.
    [21] 王晓畅,李军,张松扬,等. 基于测井资料的裂缝面孔率标定裂缝孔隙度的数值模拟及应用[J]. 中国石油大学学报(自然科学版), 2011, 35(2): 51–56.

    WANG Xiaochang, LI Jun, ZHANG Songyang, et al. Numerical simulation and application of fracture surface porosity calibrating fracture porosity by logging data[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(2): 51–56.
    [22] 李庆峰,李晓峰,刘岩. 白云岩储层电成像视地层水电阻率流体识别技术[J]. 测井技术, 2017, 41(4): 412–415.

    LI Qingfeng, LI Xiaofeng, LIU Yan. Fluid identification technique based on imaging apparent formation water resistivity in dolomite reservoirs[J]. Well Logging Technology, 2017, 41(4): 412–415.
    [23] 李善军,汪涵明,肖承文,等. 碳酸盐岩地层中裂缝孔隙度的定量解释[J]. 测井技术, 1997, 21(3): 205–214.

    LI Shanjun, WANG Hanming, XIAO Chengwen, et al. Quantitative interpretation of fracture porosity in carbonates[J]. Well Logging Technology, 1997, 21(3): 205–214.
    [24] 张程恩,潘保芝,张晓峰,等. FMI测井资料在非均质储层评价中的应用[J]. 石油物探, 2011, 50(6): 630–633. doi:  10.3969/j.issn.1000-1441.2011.06.015

    ZHANG Cheng’en, PAN Baozhi, ZHANG Xiaofeng, et al. Application of FMI logging data in evaluation of heterogeneous reservoir[J]. Geophysical Prospecting for Petroleum, 2011, 50(6): 630–633. doi:  10.3969/j.issn.1000-1441.2011.06.015
    [25] 张晓峰, 潘保芝. 储层裂缝发育等级划分研究[J]. 测井技术, 2013, 37(4): 393–396. doi:  10.3969/j.issn.1004-1338.2013.04.011

    ZHANG Xiaofeng, PAN Baozhi. Study on classification of fracture growth[J]. Well Logging Technology, 2013, 37(4): 393–396. doi:  10.3969/j.issn.1004-1338.2013.04.011
  • [1] 王建龙, 于志强, 苑卓, 冯冠雄, 柳鹤, 郭云鹏.  四川盆地泸州深层页岩气水平井钻井关键技术, 石油钻探技术. doi: 10.11911/syztjs.2021062
    [2] 李继博, 钱德儒, 郑奕挺, 张卫, 吴金平.  近钻头伽马高精度实时成像技术研究与应用, 石油钻探技术. doi: 10.11911/syztjs.2021022
    [3] 李勇政, 陈涛, 江川, 杜江.  四川盆地磨溪–高石梯区块定向钻井关键技术, 石油钻探技术. doi: 10.11911/syztjs.2020103
    [4] 陈朝伟, 黄锐, 曾波, 宋毅, 周小金.  四川盆地长宁页岩气区块套管变形井施工参数优化分析, 石油钻探技术. doi: 10.11911/syztjs.2020108
    [5] 陈四平, 谭判, 石文睿, 赵红燕.  涪陵页岩气优质储层测井综合评价方法, 石油钻探技术. doi: 10.11911/syztjs.2020091
    [6] 李新勇, 耿宇迪, 刘志远, 汪文智, 周舟.  缝洞型碳酸盐岩储层压裂效果评价方法试验研究, 石油钻探技术. doi: 10.11911/syztjs.2020074
    [7] 房好青, 赵兵, 汪文智, 周舟.  塔河油田靶向压裂预制缝转向技术模拟研究, 石油钻探技术. doi: 10.11911/syztjs.2019048
    [8] 路保平, 倪卫宁.  高精度随钻成像测井关键技术, 石油钻探技术. doi: 10.11911/syztjs.2019060
    [9] 张卫, 路保平, 王保良, 李新, 陆军轶, 冀海峰.  适用于油基钻井液的随钻电阻率成像测井方法, 石油钻探技术. doi: 10.11911/syztjs.2019009
    [10] 伍贤柱.  四川盆地威远页岩气藏高效开发关键技术, 石油钻探技术. doi: 10.11911/syztjs.2019074
    [11] 高书阳, 豆宁辉, 林永学, 柴龙, 刘锐.  川渝地区龙马溪组页岩储层水化特征评价方法, 石油钻探技术. doi: 10.11911/syztjs.2018089
    [12] 陈安明, 龙志平, 周玉仓, 王彦祺, 彭兴, 曹华庆.  四川盆地外缘常压页岩气水平井低成本钻井技术探讨, 石油钻探技术. doi: 10.11911/syztjs.2018127
    [13] 葛红旗, 金科年, 吴沁轩.  基于测井-地震信息的碳酸盐岩储层裂缝预测方法, 石油钻探技术. doi: 10.11911/syztjs.201705021
    [14] 刘伟, 张晋言, 张文姣, 刘海河, 吕增伟.  基于电成像测井资料的砂砾岩储层有效性分类评价方法, 石油钻探技术. doi: 10.11911/syztjs.201604020
    [15] 桂俊川, 夏宏泉, 邹勇, 弓浩浩.  基于测井岩石力学参数计算砂泥岩储层含气饱和度的新方法, 石油钻探技术. doi: 10.11911/syztjs.201501014
    [16] 徐生江, 戎克生, 李建国, 范劲, 肖京男, 鄢捷年.  阜东头屯河组强水敏性储层钻井液技术, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.03.012
    [17] 孟瑄, 杨宪民.  修井作业中保护裂缝性储层的暂堵技术, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.01.010
    [18] 闫丰明, 康毅力, 孙凯, 张金顺, 王红伟, 杜春朝.  缝洞型碳酸盐岩储层暂堵性堵漏配方研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.01.010
    [19] 闫丰明, 康毅力, 孙凯, 李冬梅, 杜春朝.  裂缝-孔洞型碳酸盐岩储层暂堵性堵漏机理研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2011.02.016
    [20] 闫长辉, 陈 青, 周 文.  川西须家河组致密储层力学特性的试验研究, 石油钻探技术.
  • 加载中
图(3) / 表ll (3)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  76
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-19
  • 修回日期:  2020-09-28
  • 网络出版日期:  2020-10-29
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回