四川盆地长宁页岩气区块套管变形井施工参数优化分析

陈朝伟 黄锐 曾波 宋毅 周小金

陈朝伟, 黄锐, 曾波, 宋毅, 周小金. 四川盆地长宁页岩气区块套管变形井施工参数优化分析[J]. 石油钻探技术, 2021, 49(1): 93-100. doi: 10.11911/syztjs.2020108
引用本文: 陈朝伟, 黄锐, 曾波, 宋毅, 周小金. 四川盆地长宁页岩气区块套管变形井施工参数优化分析[J]. 石油钻探技术, 2021, 49(1): 93-100. doi: 10.11911/syztjs.2020108
CHEN Zhaowei, HUANG Rui, ZENG Bo, SONG Yi, ZHOU Xiaojin. Analysis and Optimization of Construction Parameters for Preventing Casing Deformation in the Changning Shale Gas Block, Sichuan Basin[J]. Petroleum Drilling Techniques, 2021, 49(1): 93-100. doi: 10.11911/syztjs.2020108
Citation: CHEN Zhaowei, HUANG Rui, ZENG Bo, SONG Yi, ZHOU Xiaojin. Analysis and Optimization of Construction Parameters for Preventing Casing Deformation in the Changning Shale Gas Block, Sichuan Basin[J]. Petroleum Drilling Techniques, 2021, 49(1): 93-100. doi: 10.11911/syztjs.2020108

四川盆地长宁页岩气区块套管变形井施工参数优化分析

doi: 10.11911/syztjs.2020108
基金项目: 中国石油天然气股份有限公司重大技术现场试验项目“页岩气水平井套变防范与治理技术攻关”(编号:2019F-3105)部分研究内容
详细信息
    作者简介:

    陈朝伟(1979—),男,辽宁葫芦岛人,2001年毕业于湖南大学工程力学专业,2007年获北京大学固体地球物理专业博士学位,高级工程师,主要从事储层地质力学研究。E-mail:chenzwdri@cnpc.com.cn

  • 中图分类号: TE357.1

Analysis and Optimization of Construction Parameters for Preventing Casing Deformation in the Changning Shale Gas Block, Sichuan Basin

  • 摘要: 为解决四川盆地长宁页岩气区块的套管变形问题,进行了套管变形井施工参数优化分析。基于统计数据,对该区块施工参数优化现状进行了分析;基于三维地震、测井资料及测试数据,建立了该区块H平台裂缝和地应力模型;基于摩尔–库仑临界应力和物质守恒准则,进行了水力压裂数值模拟;根据滑动风险的分类,分析了压裂施工参数和裂缝带激活的关系。由统计分析可知:只采取减液量措施,裂缝带套管变形比例为21.7%;只采取减排量措施,裂缝带套管变形比例为8.1%。通过压裂模拟可知:对于高滑动风险断层,当液量减小20%时,断层激活长度和裂缝激活数分别减小17%和26%,当排量减小20%时,断层激活长度和裂缝激活数分别减小3%和6%;对于中滑动风险断层,当液量减小20%时,断层激活长度和裂缝激活数分别减小22%和30%,当排量减小20%时,断层激活长度和裂缝激活数分别减小43%和60%。研究结果表明,“高滑动风险断层减液量,中滑动风险断层减排量”的压裂施工参数优化建议,可供现场解决套管变形问题时参考。
  • 图  1  宁209井区施工参数及套管变形情况统计结果

    Figure  1.  Statistics on construction parameters and casing deformation in Ning 209 well area

    图  2  H平台微地震解释的小断层

    Figure  2.  Small faults of platform H interpreted by microseismicmethod

    图  3  H平台断层模型和层理裂缝模型

    Figure  3.  Fault model and bedding fracture model of platform H

    图  4  H平台岩体弹性模量场

    Figure  4.  Elastic modulus field of rock mass of platform H

    图  5  H平台最小水平主应力

    Figure  5.  Minimum horizontal in-situ stress of platform H

    图  6  H平台水力压裂模拟结果

    Figure  6.  Simulation results for hydraulic fracturing of platform H

    图  7  H-1井第4段和H-2井第27段压裂模拟微地震与现场微地震对比

    Figure  7.  Comparison of the simulated microseism and field microseism of fracturing in section 4 of Well H-1 and fracturing in section 27 of Well H-2

    图  8  H-1井第4段压裂的模拟与现场施工压力对比

    Figure  8.  Comparison of the simulated and field construction pressure of fracturing in section 4 of Well H-1

    图  9  H-2井第27段压裂的模拟与现场施工压力对比

    Figure  9.  Comparison of the simulated and field construction pressure for fracturing in section 27 of Well H-2

    图  10  断层滑动风险评估流程

    Figure  10.  Risk assessment process of fault slip

    图  11  断层滑动风险分类

    Figure  11.  Risk classification of fault slip

    图  12  H平台断层滑动风险分析结果

    Figure  12.  Analysis results of slip risk for faults on platform H

    图  13  高滑动风险断层排量不变、减小泵入液量时的断层激活情况

    Figure  13.  Fault activation status when flowrate is constant and the pumping fluid volume is reduced in the fault with high slip risk

    图  14  高滑动风险断层液量不变、减小泵入排量时的断 层激活情况

    Figure  14.  Fault activation status when the fluid volume is constant and pumping flowrateis reduced in the fault with high slip risk

    图  15  高滑动风险断层激活长度和裂缝激活数的敏感性

    Figure  15.  Sensitivity of the length of activated fault with high slip risk and the number of activated fractures

    图  16  中滑动风险断层排量不变、减小泵入液量时的断 层激活情况

    Figure  16.  Fault activation status when flowrate is constant and the pumping fluid volume is reduced in the fault with medium slip risk

    图  17  中滑动风险断层液量不变、减小泵入排量时的断层激活情况

    Figure  17.  Fault activation status when fluid volume is constant and the pump flowrate is reduced in the fault with medium slip risk

    图  18  中滑动风险断层激活长度和裂缝激活数的敏感性

    Figure  18.  Sensitivity of the length of activated fault with medium slip risk and the number of activated fractures

    图  19  断层压裂施工减小排量后的应力状态变化

    Figure  19.  Stress state change of fault after the flowrate is reduced in fracturing

  • [1] 陈朝伟,石林,项德贵. 长宁—威远页岩气示范区套管变形机理及对策[J]. 天然气工业,2016,36(11):70–75. doi:  10.3787/j.issn.1000-0976.2016.11.009

    CHEN Zhaowei, SHI Lin, XIANG Degui. Mechanism of casing deformation in the Changning-Weiyuan national shale gas project demonstration area and countermeasures[J]. Natural Gas Industry, 2016, 36(11): 70–75. doi:  10.3787/j.issn.1000-0976.2016.11.009
    [2] 陈朝伟,项德贵,张丰收,等. 四川长宁—威远区块水力压裂引起的断层滑移和套管变形机理及防控策略[J]. 石油科学通报,2019,4(4):364–377.

    CHEN Zhaowei, XIANG Degui, ZHANG Fengshou, et al. Fault slip and casing deformation caused by hydraulic fracturing in Changning- Weiyuan Blocks, Sichuan: mechanism and prevention strategy[J]. Petroleum Science Bulletin, 2019, 4(4): 364–377.
    [3] DONG Kai, LIU Naizhen, CHEN Zhaowei, et al. Geomechanical analysis on casing deformation in Longmaxi shale formation[J]. Journal of Petroleum Science and Engineering, 2019, 177: 724–733. doi:  10.1016/j.petrol.2019.02.068
    [4] YIN Fei, HAN Lihong, YANG Shangyu, et al. Casing deformation from fracture slip in hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2018, 166: 235–241. doi:  10.1016/j.petrol.2018.03.010
    [5] ZHANG Fengshou, YIN Zirui, CHEN Zhaowei, et al. Fault reactivation and induced seismicity during multistage hydraulic fracturing: microseismic analysis and geomechanical modeling[J]. SPE Journal, 2020, 25(2): 692–711. doi:  10.2118/199883-PA
    [6] LIU Kui, TALEGHANI A D, GAO Deli. Semianalytical model for fault slippage resulting from partial pressurization[J]. SPE Journal, 2020, 25(3): 1489–1502. doi:  10.2118/199348-PA
    [7] XI Yan, LI Jun, ZHA Chunqing, et al. A new investigation on casing shear deformation during multistage fracturing in shale gas wells based on microseism data and calliper surveys[J]. Journal of Petroleum Science and Engineering, 2019, 180: 1034–1045. doi:  10.1016/j.petrol.2019.05.079
    [8] MAXWELL S. Microseismic imaging of hydraulic fracturing: improved engineering of unconventional shale reservoirs[M]. Society of Exploration Geophysicists, 2014.
    [9] CLADOUHOS T T, MARRETT R. Are fault growth and linkage models consistent with power-law distributions of fault lengths[J]. Journal of Structural Geology, 1996, 18(2/3): 281–293.
    [10] YAGHOUBI A. Hydraulic fracturing modeling using a discrete fracture network in the Barnett Shale. International[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 98–108. doi:  10.1016/j.ijrmms.2019.01.015
    [11] 陈朝伟,王鹏飞,项德贵. 基于震源机制关系的长宁—威远区块套管变形分析[J]. 石油钻探技术,2017,45(4):110–114.

    CHEN Zhaowei, WANG Pengfei, XIANG Degui. Analysis of casing deformation in the Changning-Weiyuan Block based on focal mechanism[J]. Petroleum Drilling Techniques, 2017, 45(4): 110–114.
    [12] 郎晓玲,郭召杰. 基于DFN离散裂缝网络模型的裂缝性储层建模方法[J]. 北京大学学报(自然科学版),2013,49(6):964–972.

    LANG Xiaoling, GUO Zhaojie. Fractured reservoir modeling method based on discrete fracture network model[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(6): 964–972.
    [13] COTTRELL M G, HARTLEY L J, LIBBY S. Advances in hydromechanical coupling for complex hydraulically fractured unconventional reservoirs[R]. ARMA-2019-0504, 2019.
    [14] ODA M, YAMABE T, ISHIZUKA Y, et al. Elastic stress and strain in jointed rock masses by means of crack tensor analysis[J]. Rock Mechanics and Mining Sciences, 1993, 30(6): 89–112.
    [15] COTTRELL M, HOSSEINPOUR H, DERSHOWITZ W. Rapid discrete fracture analysis of hydraulic fracture development in naturally fractured reservoirs[R]. SPE 1582243, 2013.
    [16] ROGERS S, ELMO D, DUNPHY R, et al. Understanding hydraulic fracture geometry and interactions in the Horn River Basin through DFN and numerical modeling[R].SPE 137488, 2010.
    [17] 马克 D 佐白科.储层地质力学[M].石林, 陈朝伟, 刘玉石, 等, 译.北京: 石油工业出版社, 2011: 90−92.

    ZOBACK M D. Reservior geomechanics[M]. Translated by SHI Lin, CHEN Zhaowei, LIU Yushi, et al. Beijing: Petroleum Industry Press, 2011: 90−92.
    [18] WALSH F R, ZOBACK M D. Probabilistic assessment of potential fault slip related to injection-induced earthquakes: application to north-central Oklahoma, USA[J]. Geology, 2016, 44(12): 991–994. doi:  10.1130/G38275.1
    [19] CHEN Zhaowei, FAN Yu, HUANG Rui, et al. Case study: fault slip induced by hydraulic fracturing and risk assessment of casing deformation in the Sichuan Basin [R]. URTEC-198212-MS, 2019.
    [20] CHEN Zhaowei, ZHOU Lang, WALSH R, et al. Case study: casing deformation caused by hydraulic fracturing-induced fault slip in the Sichuan Basin[R]. URTEC-2882313-MS, 2018.
  • [1] 王金刚, 孙虎, 任斌, 尹俊禄.  填砂分段压裂技术在页岩油套变水平井的应用, 石油钻探技术. doi: 10.11911/syztjs.2021084
    [2] 李勇政, 陈涛, 江川, 杜江.  四川盆地磨溪–高石梯区块定向钻井关键技术, 石油钻探技术. doi: 10.11911/syztjs.2020103
    [3] 王志远, 黄维安, 范宇, 李萧杰, 王旭东, 黄胜铭.  长宁区块强封堵油基钻井液技术研究及应用, 石油钻探技术. doi: 10.11911/syztjs.2021039
    [4] 张峰, 罗少成, 李震, 牟瑜, 李婷婷.  四川盆地茅口组岩溶缝洞型储层有效性测井评价, 石油钻探技术. doi: 10.11911/syztjs.2020140
    [5] 王建龙, 冯冠雄, 刘学松, 郭瑞, 高学生, 霍阳.  长宁页岩气超长水平段水平井钻井完井关键技术, 石油钻探技术. doi: 10.11911/syztjs.2020086
    [6] 伍贤柱.  四川盆地威远页岩气藏高效开发关键技术, 石油钻探技术. doi: 10.11911/syztjs.2019074
    [7] 陈安明, 龙志平, 周玉仓, 王彦祺, 彭兴, 曹华庆.  四川盆地外缘常压页岩气水平井低成本钻井技术探讨, 石油钻探技术. doi: 10.11911/syztjs.2018127
    [8] 陈朝伟, 王鹏飞, 项德贵.  基于震源机制关系的长宁-威远区块套管变形分析, 石油钻探技术. doi: 10.11911/syztjs.201704019
    [9] 付宣, 李根生, 黄中伟, 迟焕鹏, 陆沛青.  煤层气径向水平井压裂室内试验与产能数值分析, 石油钻探技术. doi: 10.11911/syztjs.201602017
    [10] 王海涛, 蒋廷学, 卞晓冰, 段华.  深层页岩压裂工艺优化与现场试验, 石油钻探技术. doi: 10.11911/syztjs.201602013
    [11] 陈作, 曾义金.  深层页岩气分段压裂技术现状及发展建议, 石油钻探技术. doi: 10.11911/syztjs.201601002
    [12] 凡帆, 王京光, 蔺文洁.  长宁区块页岩气水平井无土相油基钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.201605006
    [13] 李玉伟, 艾池.  煤层气直井水力压裂裂缝起裂模型研究, 石油钻探技术. doi: 10.11911/syztjs.201504015
    [14] 仝少凯, 崔会贺, 齐加德, 李善维, 窦益华.  水力锚锚爪结构对套管变形及挤压应力的影响, 石油钻探技术. doi: 10.11911/syztjs.201506011
    [15] 蒋廷学, 卞晓冰, 袁凯, 周林波.  页岩气水平井分段压裂优化设计新方法, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.02.001
    [16] 彭春耀.  层状页岩水力压裂裂缝与岩体弱面的干扰机理研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.04.006
    [17] 安丰军, 赵安军, 周慧智, 段贵府.  利用微破裂四维影像技术分析二次加砂压裂效果, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.05.019
    [18] 葛洪魁, 王小琼, 张义.  大幅度降低页岩气开发成本的技术途径, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.06.001
    [19] 陈作, 何青, 王宝峰, 刘世华, 吴春方.  大牛地气田长水平段水平井分段压裂优化设计技术, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.06.016
    [20] 张旭, 蒋廷学, 贾长贵, 张保平, 周健.  页岩气储层水力压裂物理模拟试验研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.02.014
  • 加载中
图(19)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  81
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-10
  • 修回日期:  2020-08-09
  • 网络出版日期:  2020-10-29
  • 刊出日期:  2021-01-30

目录

    /

    返回文章
    返回