储气库注采过程中有效应力变化模拟试验

游利军 邵佳新 高新平 康毅力 王福荣

游利军, 邵佳新, 高新平, 康毅力, 王福荣. 储气库注采过程中有效应力变化模拟试验[J]. 石油钻探技术, 2020, 48(6): 104-108. doi: 10.11911/syztjs.2020102
引用本文: 游利军, 邵佳新, 高新平, 康毅力, 王福荣. 储气库注采过程中有效应力变化模拟试验[J]. 石油钻探技术, 2020, 48(6): 104-108. doi: 10.11911/syztjs.2020102
YOU Lijun, SHAO Jiaxin, GAO Xinping, KANG Yili, WANG Furong. Simulation Tests of Effective Stress Changes in Gas Storage during Injection and Production[J]. Petroleum Drilling Techniques, 2020, 48(6): 104-108. doi: 10.11911/syztjs.2020102
Citation: YOU Lijun, SHAO Jiaxin, GAO Xinping, KANG Yili, WANG Furong. Simulation Tests of Effective Stress Changes in Gas Storage during Injection and Production[J]. Petroleum Drilling Techniques, 2020, 48(6): 104-108. doi: 10.11911/syztjs.2020102

储气库注采过程中有效应力变化模拟试验

doi: 10.11911/syztjs.2020102
基金项目: 国家自然科学基金项目“富有机质页岩氧化致裂增渗加速气体传输机理研究”(编号:51674209)、非常规油气层保护四川省青年科技创新研究团队项目(编号:2016TD0016)、中国石油西南油气田分公司2018年科研科学研究与技术开发项目“储气库注采井储层伤害评价研究”(编号:20180303-12)联合资助
详细信息
    作者简介:

    游利军(1976—),男,河南新安人,2000年毕业于西南石油学院应用地球物理专业,2004年获西南石油学院矿物学、岩石学和矿床学专业硕士学位,2006年获西南石油学院油气井工程专业博士学位,教授,主要从事储层保护理论与技术、非常规油气开发、岩石物理等方面的教学与科研工作。E-mail:youlj0379@126.com

Simulation Tests of Effective Stress Changes in Gas Storage during Injection and Production

  • 摘要: 储气库周期注采过程中有效应力变化会使储层发生应力敏感,为了了解应力敏感对储气库储层渗透率的影响程度,为优化储气库注采制度提供依据,开展了考虑与不考虑有效应力作用时间的碳酸盐岩应力敏感试验,测试了试验过程中岩样的渗透率,并运用扫描电镜等手段,观测了考虑有效应力作用时间试验前后岩样裂缝的壁面。试验结果表明:不考虑有效应力作用时间时,碳酸盐岩裂缝岩样和基块岩样的应力敏感程度分别为弱—中等偏弱和无;考虑有效应力作用时间时,碳酸盐岩裂缝岩样和基块岩样的应力敏感程度分别为中等偏强和弱;随着有效应力作用时间增长,岩石裂缝壁面微凸体的破碎与微裂纹的萌生和扩展会强化岩样的应力敏感性。研究表明,为了弱化储气库储层的应力敏感程度,应合理控制储气库的注采压力。
  • 图  1  应力敏感试验装置

    1.驱替泵;2.阀门;3.压力传感器;4.岩心夹持器;5.围压系统;6.质量流量计;7.回压阀;8.氮气瓶;9.数据采集系统

    Figure  1.  Stress sensitivity testing device

    图  2  有效应力作用时间与岩样渗透率的关系

    Figure  2.  Relationship between effective stress action duration and rock sample permeability

    图  3  考虑有效应力作用时间应力敏感试验前后的裂缝壁面扫描电镜图片

    Figure  3.  Scanning electron micrograph of fracture walls before and after stress sensitivity experiment taking into account of the effective stress action duration

    表  1  试验岩样的基本物性参数

    Table  1.   Basic physical parameters of experimental rock samples

    岩样号长度/mm直径/mm孔隙度,%渗透率/mD裂缝宽度/μm备注
    XG-144.4024.603.02 11.531913.88裂缝
    XG-245.1024.722.86 3.6667 9.49裂缝
    XG-343.2025.022.21 0.0013基块
    XG-443.2424.603.42 0.0015基块
    XG-544.5224.883.31 31.426519.46裂缝
    XG-644.7724.583.72147.264732.43裂缝
    XG-745.2624.502.53 0.0012基块
    XG-845.0425.042.45 0.0013基块
    下载: 导出CSV

    表  2  应力敏感程度评价结果

    Table  2.   Evaluation results of stress sensitivity

    岩样应力敏感系数应力敏感程度备注
    XG-10.34中等偏弱裂缝
    XG-20.21裂缝
    XG-30.03基块
    XG-40.04基块
    下载: 导出CSV

    表  3  考虑有效应力作用时间的应力敏感评价结果

    Table  3.   Stress sensitivity evaluation results considering the duration of effective stress action

    岩样号应力敏感系数应力敏感程度备注
    XG-50.75裂缝
    XG-60.68中等偏强裂缝
    XG-70.18基块
    XG-80.19基块
    下载: 导出CSV
  • [1] KAN S Y, CHEN B, WU X F, et al. Natural gas overview for world economy: from primary supply to final demand via global supply chains[J]. Energy Policy, 2019, 124: 215–225. doi:  10.1016/j.enpol.2018.10.002
    [2] 张刚雄,李彬,郑得文,等. 中国地下储气库业务面临的挑战及对策建议[J]. 天然气工业, 2017, 37(1): 153–159.

    ZHANG Gangxiong,LI Bin,ZHENG Dewen,et al. Challenges to and proposals for underground gas storage (UGS) business in China[J]. Natural Gas Industry, 2017, 37(1): 153–159.
    [3] 殷代印,何超,董秀荣. 储气库调峰能力数值模拟研究[J]. 特种油气藏, 2015, 22(1): 95–98.

    YIN Daiyin,HE Chao,DONG Xiurong. Numerical simulation of gas storage peaking capacity[J]. Special Oil & Gas Reservoirs, 2015, 22(1): 95–98.
    [4] AZIN R, NASIRI A, Entezari A J. Underground gas storage in a partially depleted gas reservoir[J]. Oil & Gas Science and Technology, 2008, 63(6): 691–703.
    [5] ARFAEE M I R A, BEHNAM S S. Investigating the effect of fracture–matrix interaction in underground gas storage process at condensate naturally fractured reservoirs[J]. Journal of Natural Gas Science and Engineering, 2014, 19: 161–174. doi:  10.1016/j.jngse.2014.05.007
    [6] LI Yongsheng, XIA Caichu. Time-dependent tests on intact rocks in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(3): 467–475. doi:  10.1016/S1365-1609(99)00073-8
    [7] FATT I, DAVIS D H. Reduction in permeability with overburden pressure[J]. Journal of Petroleum Technology, 1952, 4(12): 1–16.
    [8] GOBRAN B, BRIGHAM W E, Ramey H J. Absolute permeability as a function of confining pressure, pore pressure, and temperature[J]. SPE Formation Evaluation, 1987, 2(1): 77–84. doi:  10.2118/10156-PA
    [9] WANG Rui, YUE Xiang’an, ZHANG Wei, et al. Effects of time lag and stress loading rate on permeability in low permeability reservoirs[J]. Mining Science and Technology, 2009, 19(4): 526–530.
    [10] SELVADURAI P, GLOWACKI A. Stress-induced permeability alterations in an argillaceous limestone[J]. Rock Mechanics and Rock Engineering, 2016, 50(5): 1079–1096.
    [11] 王秀影,吴通,蔡军,等. 饶阳凹陷页岩油储层应力敏感规律[J]. 钻井液与完井液, 2020, 37(2): 185–191.

    WANG Xiuying, WU Tong, CAI Jun, et al. Patterns of stress sensitivity of the shale oil reservoirs in Raoyang Depression[J]. Drilling Fluid & Completion Fluid, 2020, 37(2): 185–191.
    [12] 陈朝晖,谢一婷,邓勇. 疏松砂岩油藏出砂应力敏感实验研究[J]. 石油钻探技术, 2013, 41(1): 61–64.

    CHEN Zhaohui, XIE Yiting, DENG Yong. Experimental study on sanding stress sensitivity in unconsolidated sandstone reservoir[J]. Petroleum Drilling Techniques, 2013, 41(1): 61–64.
    [13] 王欣,齐梅,胡永乐. 西加盆地B气田致密砂岩储层应力敏感评价[J]. 特种油气藏, 2015, 22(2): 85–88.

    WANG Xin, QI Mei, HU Yongle. Evaluation on stress sensitivity of tight sandstone in B Gasfield of Western Canada Basin[J]. Special Oil & Gas Reservoirs, 2015, 22(2): 85–88.
    [14] JELMERT T A, SELSENG H. Permeability function describes core permeability in stress sensitivity rocks[J]. Oil & Gas Journal, 1998, 12(7): 60–63.
    [15] 兰林,康毅力,陈一健,等. 储层应力敏感性评价试验方法与评价指标探讨[J]. 钻井液与完井液, 2005, 22(3): 1–4. doi:  10.3969/j.issn.1001-5620.2005.03.001

    LAN Lin, KANG Yili, CHEN Yijian, et al. Discussion on evaluation methods for stress sensitivities of low permeability and tight sandstone reservoirs[J]. Drilling Fluid & Completion Fluid, 2005, 22(3): 1–4. doi:  10.3969/j.issn.1001-5620.2005.03.001
    [16] MOOSAVI S, GOSHTASBI K, KAZEMZADEH E, et al. Relationship between porosity and permeability with stress using pore volume compressibility characteristic of reservoir rocks[J]. Arabian Journal of Geosciences, 2014, 7(1): 231–239. doi:  10.1007/s12517-012-0760-x
    [17] 罗川. 储层渗透率应力敏感研究现状[J]. 断块油气田, 2019, 26(2): 187–191.

    LUO Chuan. Research status of stress sensitivity of reservoir permeability[J]. Fault-Block Oil & Gas Field, 2019, 26(2): 187–191.
    [18] 蒋海军,鄢捷年,李荣. 裂缝性储层应力敏感性试验研究[J]. 石油钻探技术, 2000, 28(6): 32–33. doi:  10.3969/j.issn.1001-0890.2000.06.013

    JIANG Haijun, YAN Jienian, LI Rong. Experimental study on Stress-Sensitivity of fracturing formations[J]. Petroleum Drilling Techniques, 2000, 28(6): 32–33. doi:  10.3969/j.issn.1001-0890.2000.06.013
    [19] YOU Lijun, XUE Kunlin, KANG Yili, et al. Pore structure and limit pressure of gas slippage effect in tight sandstone[J]. The Scientific World Journal, 2013(2): 572140.
    [20] TADAYONI M, VALADKHANI M. New approach for the prediction of Klinkenberg permeability in situ for low permeability sandstone in tight gas reservoir[R]. SPE 152451, 2012.
    [21] ZEINIJAHROMI A, VAZ A, BEDRIKOVETSKY P. Well impairment by fines migration in gas fields[J]. Journal of Petroleum Science and Engineering, 2012, 88/89: 125–135. doi:  10.1016/j.petrol.2012.02.002
    [22] TIAN Jian, YOU Lijun, LUO Pingya, et al. Experimental investigation on liquid permeability of tight rocks under back pressure conditions[J]. Journal of Petroleum Science and Engineering, 2018, 169: 421–427. doi:  10.1016/j.petrol.2018.06.005
    [23] SCHOLZ C H. Mechanism of creep in brittle rock[J]. Journal of Geophysical Research, 1968, 73(10): 3295–3303. doi:  10.1029/JB073i010p03295
    [24] BIENIAWSKI Z T. Mechanism of brittle fracture of rock: part I: theory of the fracture process[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1967, 4(4): 395–404.
    [25] WINKLER E M. A durability index for stone[J]. Bulletin of the Association of Engineering Geologists, 1986, 23(3): 344–347.
    [26] 郑子君,余成. 考虑基质和酸压缝应力敏感性的产能预测模型[J]. 特种油气藏, 2018, 25(4): 76–81. doi:  10.3969/j.issn.1006-6535.2018.04.015

    ZHENG Zijun, YU Cheng. Productivity forecasting model with consideration to stress sensitivities of matrix and acid-induced frac-tures[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 76–81. doi:  10.3969/j.issn.1006-6535.2018.04.015
  • [1] 李虹, 于海洋, 杨海烽, 邓彤, 李旭.  裂缝性非均质致密储层自适应应力敏感性研究, 石油钻探技术. doi: 10.11911/syztjs.2022054
    [2] 吴柏志, 张怀兵.  满深1井碳酸盐岩地层自愈合水泥浆固井技术, 石油钻探技术. doi: 10.11911/syztjs.2020071
    [3] 李江, 陈先超, 高平, 舒成龙.  考虑应力敏感效应的裂缝性碳酸盐岩气井拟稳态产能预测方法, 石油钻探技术. doi: 10.11911/syztjs.2021032
    [4] 陈修平, 李双贵, 于洋, 周丹.  顺北油气田碳酸盐岩破碎性地层防塌钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.2020005
    [5] 刘利清, 刘培亮, 蒋林.  塔河油田碳酸盐岩缝洞型油藏量化注水开发技术, 石油钻探技术. doi: 10.11911/syztjs.2019122
    [6] 方俊伟, 张翼, 李双贵, 于培志, 李银婷.  顺北一区裂缝性碳酸盐岩储层抗高温可酸溶暂堵技术, 石油钻探技术. doi: 10.11911/syztjs.2020006
    [7] 刘阳.  高温深层碳酸盐岩裸眼酸压完井封隔器研制与现场试验, 石油钻探技术. doi: 10.11911/syztjs.2020044
    [8] 刘厚彬, 韩旭, 张俊, 刘彪, 孟英峰.  川西低渗透气藏气体钻井井壁稳定性评价方法, 石油钻探技术. doi: 10.11911/syztjs.2019004
    [9] 李子丰, 郑义清.  油气藏多孔岩石鼓胀压缩特性表征方法探讨, 石油钻探技术. doi: 10.11911/syztjs.2018066
    [10] 鲁洪江, 杨洪志, Moh’d M. Amro, 何勇明, 徐伟, 鲁杰, M. Szabries.  地下储气库注采循环过程中储层干化问题研究, 石油钻探技术. doi: 10.11911/syztjs.2018122
    [11] 刘建坤, 蒋廷学, 周林波, 周珺, 吴峙颖, 吴沁轩.  碳酸盐岩储层多级交替酸压技术研究, 石油钻探技术. doi: 10.11911/syztjs.201701018
    [12] 路保平, 鲍洪志, 余夫.  基于流体声速的碳酸盐岩地层孔隙压力求取方法, 石油钻探技术. doi: 10.11911/syztjs.201703001
    [13] 刘礼军, 姚军, 孙海, 白玉湖, 徐兵祥, 陈岭.  考虑启动压力梯度和应力敏感的页岩油井产能分析, 石油钻探技术. doi: 10.11911/syztjs.201705015
    [14] 杨金辉, 李立, 李钟洋, 鞠斌山.  滑脱和应力敏感效应对页岩气开发动态影响的数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.201701015
    [15] 张君龙, 汪爱云, 何香香.  古城地区碳酸盐岩岩性及微相测井识别方法, 石油钻探技术. doi: 10.11911/syztjs.201603022
    [16] 方翔, 尚希涛, 王潇.  YD油田碳酸盐岩储层测井评价方法, 石油钻探技术. doi: 10.11911/syztjs.201503006
    [17] 王志战, 秦黎明, 李启波, 陆黄生.  碳酸盐岩地层异常压力随钻监测关键问题探讨——以川东北飞仙关组和长兴组地层为例, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.01.003
    [18] 余夫, 金衍, 陈勉, 卢运虎, 牛成成, 葛伟凤.  基于薄板理论的碳酸盐岩地层压力检测方法探讨, 石油钻探技术. doi: 10.11911/syztjs.201405010
    [19] 陈朝晖, 谢一婷, 邓勇.  疏松砂岩油藏出砂应力敏感实验研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.01.012
    [20] 韩志勇.  关于有效应力圆理论的讨论, 石油钻探技术.
  • 加载中
图(3) / 表ll (3)
计量
  • 文章访问数:  251
  • HTML全文浏览量:  137
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-23
  • 修回日期:  2020-10-14
  • 网络出版日期:  2020-11-02
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回