A New Thermal Fluid Coupling Temperature Inversion for the Formation Characteristics of High-Yield Wells
-
摘要:
高探1井试油时,井底流体温度随着产量增大而升高,而现有测试资料分析方法无法解释该现象。为此,根据质量和能量守恒方程,考虑高温流体在地层中的渗流规律和在井筒内的流动规律、渗流和流动时的传热,建立了储层和井筒的热流耦合模型,利用该模型分析了温度瞬态数据,反演了高产井地层温度。高探1井的生产压力和温度数据反演结果表明,反演得到的温度曲线与实测温度曲线吻合良好,可以解释井底流体温度随产量升高的现象。研究表明,高产井地层特征温度反演方法能够定量分析地层热力学和渗流参数、确定高产井流体的产出位置,为生产管柱安全评价、现场生产决策、油藏认识和储量计算提供了理论依据。
Abstract:It was found during the oil test of Well Gaotan-1 that the temperature of bottomhole fluids increased with production, which cannot be explained by existing test data and analysis methods. Therefore, based on the conservation equations of mass and energy and according to the seepage flow law of high-temperature fluid in the formation, the flow law in the wellbore and the heat transfer during the seepage and flow, a model of thermal flow coupling between the wellbore and reservoir was established, and a method for inversion of formation temperature in high-yield wells was proposed by analyzing transient temperature data. This method was used to invert the production pressure and temperature data of Well Gaotan-1, and the temperature curve of the inversion was highly consistent with the measured temperature curve of Well Gaotan-1, which explained the phenomenon that the bottomhole fluid temperature increased with the production. The study indicated that the proposed new method for the inversion of formation characteristic and temperature of high-yield wells could quantitatively analyze the formation thermodynamics and seepage parameters, and in that way, determine the fluids producing location of high-yield wells, and provide important basis for production string safety appraisal, field production decision-making, reservoir recognition and reserves calculation.
-
Key words:
- high-yield well /
- thermal flow /
- coupling /
- temperature /
- inversion /
- mathematical model /
- Well Gaotan-1
-
表 1 不同产量下井底流体温度的预测值与实测值对比
Table 1. Comparison on the predicted and measured values of bottomhole fluid temperature at different yields
产量/(m3·d–1) 井底流体温度/℃ 相对误差,% 实测 预测 398.70 147.192 148.103 0.619 511.00 149.357 150.004 0.433 619.10 151.557 151.834 0.183 676.80 153.408 152.811 0.389 809.28 155.851 155.054 0.511 -
[1] MURADOV K, DAVIES D. Temperature transient analysis in horizontal wells: application workflow, problems and advantages[J]. Journal of Petroleum Science and Engineering, 2012, 92/93: 11–23. doi: 10.1016/j.petrol.2012.06.012 [2] RAMEY H J Jr. Wellbore heat transmission[J]. Journal of Petroleum Technology, 1962, 14(4): 427–435. [3] SATTER A. Heat losses during flow of steam down a wellbore[J]. Journal of Petroleum Technology, 1965, 17(7): 845–851. doi: 10.2118/1071-PA [4] WILLHITE G P. Over-all heat transfer coefficients in steam and hot water injection wells[J]. Journal of Petroleum Technology, 1967, 19(5): 607–615. doi: 10.2118/1449-PA [5] SHIU K C, BEGGS H D. Predicting temperatures in flowing oil wells[J]. Journal of Energy Resources Technology, 1980, 102(1): 2–11. doi: 10.1115/1.3227845 [6] CHENG Wenlong, HUANG Yonghua, LU Detang, et al. A novel analytical transient heat-conduction time function for heat transfer in steam injection wells considering the wellbore heat capacity[J]. Energy, 2011, 36(7): 4080–4088. doi: 10.1016/j.energy.2011.04.039 [7] HASAN A R, KABIR C S. Heat transfer during two-phase flow in wellbores: part I: formation temperature[R]. SPE 22866, 1991. [8] SAGAR R, DOTY D R, SCHMIDT Z. Predicting temperature profiles in a flowing well[J]. SPE Production Engineering, 1991, 6(4): 441–448. doi: 10.2118/19702-PA [9] ALVES I N, ALHANATI F J S, SHOHAM O. A unified model for predicting flowing temperature distribution in wellbores and pipelines[J]. SPE Production Engineering, 1992, 7(4): 363–367. doi: 10.2118/20632-PA [10] DENNEY D. Manage fields with intelligent surveillance, production optimization, and collaboration[J]. Journal of Petroleum Technology, 2012, 64(12): 98–100. doi: 10.2118/1212-0098-JPT [11] CHENG Wenlong, HUANG Yonghua, LIU Na, et al. Estimation of geological formation thermal conductivity by using stochastic approximation method based on well-log temperature data[J]. Energy, 2012, 38(1): 21–30. doi: 10.1016/j.energy.2011.12.047 [12] ONUR M, CINAR M. Temperature transient analysis of slightly compressible, single-phase reservoirs[R]. SPE 180074, 2016. [13] PALABIYIK Y, ONUR M, TUREYEN O I, et al. Transient temperature behavior and analysis of single-phase liquid-water geothermal reservoirs during drawdown and buildup tests: part I: theory, new analytical and approximate solutions[J]. Journal of Petroleum Science and Engineering, 2016, 146: 637–656. doi: 10.1016/j.petrol.2016.08.003 [14] MAO Yilin, ZEIDOUNI M. Accounting for fluid-property variations in temperature transient analysis[R]. SPE 187465, 2017. [15] 张柏年, 廖锐全. 同时预测油井中压力和温度剖面方法的改进[J]. 江汉石油学院学报, 1991, 13(4): 32–39.ZHANG Bainian, LIAO Ruiquan. An improved mode for predicting pressure and temperature profiles in oil and gas wells[J]. Journal of Jianghan Pertroleum Institute, 1991, 13(4): 32–39. [16] 张奎祥,郭平,李玉彬. 利用微差井温确定原始地层的导热系数[J]. 特种油气藏, 1996, 3(1): 13–18.ZHANG Kuixiang, GUO Ping, LI Yubin. Determination of thermal conductive factor of original formation through microdifference temperature[J]. Special Oil & Gas Reservoirs, 1996, 3(1): 13–18. [17] 姜晓燕,卢德唐,王平. 温度试井解释方法的研究及应用[J]. 油气井测试, 2000, 9(3): 32–36. doi: 10.3969/j.issn.1004-4388.2000.03.009JIANG Xiaoyan, LU Detang, WANG Ping. Study and application on temperature well test analysis method[J]. Well Testing, 2000, 9(3): 32–36. doi: 10.3969/j.issn.1004-4388.2000.03.009 [18] 卢德唐, 曾亿山, 郭永存. 多层地层中的井筒及地层温度解析解[J]. 水动力学研究与进展(A辑), 2002, 17(3): 382–390.LU Detang, ZENG Yishan, GUO Yongcun. Analytical soultion of temperature in wellbore and formation in multi-layer[J]. Journal of Hydrodynamics(Ser. A), 2002, 17(3): 382–390. [19] 单学军,张士诚,王文雄,等. 稠油开采中井筒温度影响因素分析[J]. 石油勘探与开发, 2004, 31(3): 136–139. doi: 10.3321/j.issn:1000-0747.2004.03.038SHAN Xuejun, ZHANG Shicheng, WANG Wenxiong, et al. The factors influencing the wellbore temperature in heavy oil production[J]. Petroleum Exploration and Development, 2004, 31(3): 136–139. doi: 10.3321/j.issn:1000-0747.2004.03.038 [20] 郭永存,曾亿山,卢德唐. 地层静温预测的非牛顿流体数学模型[J]. 物理学报, 2005, 54(2): 802–806. doi: 10.3321/j.issn:1000-3290.2005.02.052GUO Yongcun, ZENG Yishan, LU Detang. The non-Newtonian fluid mathematical model for strata static temperature forecast[J]. Acta Physica Sinica, 2005, 54(2): 802–806. doi: 10.3321/j.issn:1000-3290.2005.02.052 [21] 刘奎,高德利,曾静,等. 温度与压力作用下页岩气井环空带压力学分析[J]. 石油钻探技术, 2017, 45(3): 8–14.LIU Kui, GAO Deli, ZENG Jing, et al. Annulus pressure analysis of a shale gas well under varied temperature and pressure[J]. Petroleum Drilling technology, 2017, 45(3): 8–14. [22] 杨顺辉,豆宁辉,赵向阳,等. 多层合采智能井井筒温度场预测模型及应用[J]. 石油钻探技术, 2019, 47(4): 83–91. doi: 10.11911/syztjs.2019049YANG Shunhui, DOU Ninghui, ZHAO Xiangyang, et al. Temperature field prediction model for multi-layer commingled production wellbore in intelligent wells and it’s application[J]. Petroleum Drilling Techniques, 2019, 47(4): 83–91. doi: 10.11911/syztjs.2019049 [23] ATKINSON P G, RAMEY H J Jr. Problems of heat transfer in porous media[R]. SPE 6792, 1977. [24] 孔祥言.高等渗流力学[M].合肥: 中国科学技术大学出版社, 2010.KONG Xiangyan. Advanced mechanics of fluid in porous media[M]. Hefei: University of Science and Technology of China Press, 2010. [25] MAUBEUGE F, ARQUIS E, BERTRAND O. Mother: a model for interpreting thermometric[R]. SPE 28588, 1994. -