高产井地层特征的热流耦合温度反演新方法

毛新军 曹植纲 陈超峰 胡广文 封猛 咸玉席

毛新军, 曹植纲, 陈超峰, 胡广文, 封猛, 咸玉席. 高产井地层特征的热流耦合温度反演新方法[J]. 石油钻探技术, 2020, 48(4): 118-123. doi: 10.11911/syztjs.2020062
引用本文: 毛新军, 曹植纲, 陈超峰, 胡广文, 封猛, 咸玉席. 高产井地层特征的热流耦合温度反演新方法[J]. 石油钻探技术, 2020, 48(4): 118-123. doi: 10.11911/syztjs.2020062
MAO Xinjun, CAO Zhigang, CHEN Chaofeng, HU Guangwen, FENG Meng, XIAN Yuxi. A New Thermal Fluid Coupling Temperature Inversion for the Formation Characteristics of High-Yield Wells[J]. Petroleum Drilling Techniques, 2020, 48(4): 118-123. doi: 10.11911/syztjs.2020062
Citation: MAO Xinjun, CAO Zhigang, CHEN Chaofeng, HU Guangwen, FENG Meng, XIAN Yuxi. A New Thermal Fluid Coupling Temperature Inversion for the Formation Characteristics of High-Yield Wells[J]. Petroleum Drilling Techniques, 2020, 48(4): 118-123. doi: 10.11911/syztjs.2020062

高产井地层特征的热流耦合温度反演新方法

doi: 10.11911/syztjs.2020062
基金项目: 国家科技重大专项“致密油藏多尺度介质复杂结构井数值试井分析及应用研究”(编号:2017ZX05009-005-002)资助
详细信息
    作者简介:

    毛新军(1973—),男,浙江温岭人,1997年毕业于新疆石油学院地质勘查专业,高级工程师,主要从事油气勘探开发方面的研究和管理工作。E-mail:mxj7341@petrochina.com.cn

    通讯作者:

    咸玉席,yxxian@ustc.edu.cn

  • 中图分类号: TE353+.4

A New Thermal Fluid Coupling Temperature Inversion for the Formation Characteristics of High-Yield Wells

  • 摘要: 高探1井试油时,井底流体温度随着产量增大而升高,而现有测试资料分析方法无法解释该现象。为此,根据质量和能量守恒方程,考虑高温流体在地层中的渗流规律和在井筒内的流动规律、渗流和流动时的传热,建立了储层和井筒的热流耦合模型,利用该模型分析了温度瞬态数据,反演了高产井地层温度。高探1井的生产压力和温度数据反演结果表明,反演得到的温度曲线与实测温度曲线吻合良好,可以解释井底流体温度随产量升高的现象。研究表明,高产井地层特征温度反演方法能够定量分析地层热力学和渗流参数、确定高产井流体的产出位置,为生产管柱安全评价、现场生产决策、油藏认识和储量计算提供了理论依据。
  • 图  1  储层平面径向流模型

    Figure  1.  Planar radial flow model of reservoir

    图  2  井筒传热模型

    Figure  2.  Wellbore thermal transfer model

    图  3  典型烃混合物的Joule-Thomson效应

    Figure  3.  Joule-Thomson effect of typical hydrocarbons mixture

    图  4  高探1井实测井底温度曲线

    Figure  4.  Measured bottom fluid temperature curve of Well Gaotan-1

    图  5  高探1井井底流体温度与产量关系的拟合曲线

    Figure  5.  Fitting curve of relationship between bottomhole fluid temperature and production in Well Gaotan-1

    图  6  高探1井关井后的井底温度–压力曲线

    Figure  6.  Bottomhole temperature-pressure curve after shut-in of Well Gaotan-1

    图  7  反演双对数温度曲线及其导数曲线与实测双对数温度曲线及其导数曲线的拟合

    Figure  7.  Fitting of inversed double logarithmic temperature curve and its derivative curve with measured double logarithmic temperature curve and its derivative curve

    表  1  不同产量下井底流体温度的预测值与实测值对比

    Table  1.   Comparison on the predicted and measured values of bottomhole fluid temperature at different yields

    产量/(m3·d–1井底流体温度/℃相对误差,%
    实测预测
    398.70147.192148.1030.619
    511.00149.357150.0040.433
    619.10151.557151.8340.183
    676.80153.408152.8110.389
    809.28155.851155.0540.511
    下载: 导出CSV
  • [1] MURADOV K, DAVIES D. Temperature transient analysis in horizontal wells: application workflow, problems and advantages[J]. Journal of Petroleum Science and Engineering, 2012, 92/93: 11–23. doi:  10.1016/j.petrol.2012.06.012
    [2] RAMEY H J Jr. Wellbore heat transmission[J]. Journal of Petroleum Technology, 1962, 14(4): 427–435.
    [3] SATTER A. Heat losses during flow of steam down a wellbore[J]. Journal of Petroleum Technology, 1965, 17(7): 845–851. doi:  10.2118/1071-PA
    [4] WILLHITE G P. Over-all heat transfer coefficients in steam and hot water injection wells[J]. Journal of Petroleum Technology, 1967, 19(5): 607–615. doi:  10.2118/1449-PA
    [5] SHIU K C, BEGGS H D. Predicting temperatures in flowing oil wells[J]. Journal of Energy Resources Technology, 1980, 102(1): 2–11. doi:  10.1115/1.3227845
    [6] CHENG Wenlong, HUANG Yonghua, LU Detang, et al. A novel analytical transient heat-conduction time function for heat transfer in steam injection wells considering the wellbore heat capacity[J]. Energy, 2011, 36(7): 4080–4088. doi:  10.1016/j.energy.2011.04.039
    [7] HASAN A R, KABIR C S. Heat transfer during two-phase flow in wellbores: part I: formation temperature[R]. SPE 22866, 1991.
    [8] SAGAR R, DOTY D R, SCHMIDT Z. Predicting temperature profiles in a flowing well[J]. SPE Production Engineering, 1991, 6(4): 441–448. doi:  10.2118/19702-PA
    [9] ALVES I N, ALHANATI F J S, SHOHAM O. A unified model for predicting flowing temperature distribution in wellbores and pipelines[J]. SPE Production Engineering, 1992, 7(4): 363–367. doi:  10.2118/20632-PA
    [10] DENNEY D. Manage fields with intelligent surveillance, production optimization, and collaboration[J]. Journal of Petroleum Technology, 2012, 64(12): 98–100. doi:  10.2118/1212-0098-JPT
    [11] CHENG Wenlong, HUANG Yonghua, LIU Na, et al. Estimation of geological formation thermal conductivity by using stochastic approximation method based on well-log temperature data[J]. Energy, 2012, 38(1): 21–30. doi:  10.1016/j.energy.2011.12.047
    [12] ONUR M, CINAR M. Temperature transient analysis of slightly compressible, single-phase reservoirs[R]. SPE 180074, 2016.
    [13] PALABIYIK Y, ONUR M, TUREYEN O I, et al. Transient temperature behavior and analysis of single-phase liquid-water geothermal reservoirs during drawdown and buildup tests: part I: theory, new analytical and approximate solutions[J]. Journal of Petroleum Science and Engineering, 2016, 146: 637–656. doi:  10.1016/j.petrol.2016.08.003
    [14] MAO Yilin, ZEIDOUNI M. Accounting for fluid-property variations in temperature transient analysis[R]. SPE 187465, 2017.
    [15] 张柏年, 廖锐全. 同时预测油井中压力和温度剖面方法的改进[J]. 江汉石油学院学报, 1991, 13(4): 32–39.

    ZHANG Bainian, LIAO Ruiquan. An improved mode for predicting pressure and temperature profiles in oil and gas wells[J]. Journal of Jianghan Pertroleum Institute, 1991, 13(4): 32–39.
    [16] 张奎祥,郭平,李玉彬. 利用微差井温确定原始地层的导热系数[J]. 特种油气藏, 1996, 3(1): 13–18.

    ZHANG Kuixiang, GUO Ping, LI Yubin. Determination of thermal conductive factor of original formation through microdifference temperature[J]. Special Oil & Gas Reservoirs, 1996, 3(1): 13–18.
    [17] 姜晓燕,卢德唐,王平. 温度试井解释方法的研究及应用[J]. 油气井测试, 2000, 9(3): 32–36. doi:  10.3969/j.issn.1004-4388.2000.03.009

    JIANG Xiaoyan, LU Detang, WANG Ping. Study and application on temperature well test analysis method[J]. Well Testing, 2000, 9(3): 32–36. doi:  10.3969/j.issn.1004-4388.2000.03.009
    [18] 卢德唐, 曾亿山, 郭永存. 多层地层中的井筒及地层温度解析解[J]. 水动力学研究与进展(A辑), 2002, 17(3): 382–390.

    LU Detang, ZENG Yishan, GUO Yongcun. Analytical soultion of temperature in wellbore and formation in multi-layer[J]. Journal of Hydrodynamics(Ser. A), 2002, 17(3): 382–390.
    [19] 单学军,张士诚,王文雄,等. 稠油开采中井筒温度影响因素分析[J]. 石油勘探与开发, 2004, 31(3): 136–139. doi:  10.3321/j.issn:1000-0747.2004.03.038

    SHAN Xuejun, ZHANG Shicheng, WANG Wenxiong, et al. The factors influencing the wellbore temperature in heavy oil production[J]. Petroleum Exploration and Development, 2004, 31(3): 136–139. doi:  10.3321/j.issn:1000-0747.2004.03.038
    [20] 郭永存,曾亿山,卢德唐. 地层静温预测的非牛顿流体数学模型[J]. 物理学报, 2005, 54(2): 802–806. doi:  10.3321/j.issn:1000-3290.2005.02.052

    GUO Yongcun, ZENG Yishan, LU Detang. The non-Newtonian fluid mathematical model for strata static temperature forecast[J]. Acta Physica Sinica, 2005, 54(2): 802–806. doi:  10.3321/j.issn:1000-3290.2005.02.052
    [21] 刘奎,高德利,曾静,等. 温度与压力作用下页岩气井环空带压力学分析[J]. 石油钻探技术, 2017, 45(3): 8–14.

    LIU Kui, GAO Deli, ZENG Jing, et al. Annulus pressure analysis of a shale gas well under varied temperature and pressure[J]. Petroleum Drilling technology, 2017, 45(3): 8–14.
    [22] 杨顺辉,豆宁辉,赵向阳,等. 多层合采智能井井筒温度场预测模型及应用[J]. 石油钻探技术, 2019, 47(4): 83–91. doi:  10.11911/syztjs.2019049

    YANG Shunhui, DOU Ninghui, ZHAO Xiangyang, et al. Temperature field prediction model for multi-layer commingled production wellbore in intelligent wells and it’s application[J]. Petroleum Drilling Techniques, 2019, 47(4): 83–91. doi:  10.11911/syztjs.2019049
    [23] ATKINSON P G, RAMEY H J Jr. Problems of heat transfer in porous media[R]. SPE 6792, 1977.
    [24] 孔祥言.高等渗流力学[M].合肥: 中国科学技术大学出版社, 2010.

    KONG Xiangyan. Advanced mechanics of fluid in porous media[M]. Hefei: University of Science and Technology of China Press, 2010.
    [25] MAUBEUGE F, ARQUIS E, BERTRAND O. Mother: a model for interpreting thermometric[R]. SPE 28588, 1994.
  • [1] 余意, 王雪瑞, 柯珂, 王迪, 于鑫, 高永海.  极地钻井井筒温度压力预测模型及分布规律研究, 石油钻探技术. doi: 10.11911/syztjs.2021047
    [2] 欧阳伟平, 张冕, 孙虎, 张云逸, 池晓明.  页岩油水平井压裂渗吸驱油数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.2021083
    [3] 胡松, 王敏, 田飞, 赵磊.  基于水平井电阻率测井的井间夹层反演方法及应用, 石油钻探技术. doi: 10.11911/syztjs.2021031
    [4] 许锋, 姚约东, 吴承美, 许章, 张金风, 赵国翔.  温度对吉木萨尔致密油藏渗吸效率的影响研究, 石油钻探技术. doi: 10.11911/syztjs.2020114
    [5] 杨震, 于其蛟, 马清明.  基于拟牛顿法的随钻方位电磁波电阻率仪器响应实时反演与现场试验, 石油钻探技术. doi: 10.11911/syztjs.2020025
    [6] 刘奎, 高德利, 曾静, 房军, 王宴滨.  温度与压力作用下页岩气井环空带压力学分析, 石油钻探技术. doi: 10.11911/syztjs.201703002
    [7] 郑春峰, 魏琛, 张海涛, 李昂, 孟红霞.  海上油井井筒结蜡剖面预测新模型, 石油钻探技术. doi: 10.11911/syztjs.201704018
    [8] 马帅, 张风波, 洪楚侨, 刘双琪, 钟家峻, 王世朝.  多层合采阶梯井产能计算模型的建立与求解, 石油钻探技术. doi: 10.11911/syztjs.201505016
    [9] 何淼, 柳贡慧, 李军, 李梦博, 查春青, 李根.  多相流全瞬态温度压力场耦合模型求解及分析, 石油钻探技术. doi: 10.11911/syztjs.201502005
    [10] 徐鑫.  水平井控流筛管完井技术研究及应用, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.03.014
    [11] 李梦博, 柳贡慧, 李军, 魏晓强, 高海军.  考虑非牛顿流体螺旋流动的钻井井筒温度场研究, 石油钻探技术. doi: 10.11911/syztjs.201405013
    [12] 唐述凯, 李明忠, 刘陈伟, 张国栋.  闭式热流体循环井筒温度分布规律研究, 石油钻探技术. doi: 10.11911/syztjs.201405019
    [13] 闫铁, 徐婷, 毕雪亮, 于洋.  丛式井平台井口布置方法, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.02.003
    [14] 毛惠, 邱正松, 黄维安, 沈忠厚, 杨丽媛, 钟汉毅.  温度和压力对黏土矿物水化膨胀特性的影响, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.06.011
    [15] 何保生, 刘华亮, 刘刚, 杨全枝, 耿占力.  基于球面波传播理论的钻头趋近邻井防碰预测模型, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.03.012
    [16] 窦亮彬, 李根生, 沈忠厚, 吴春方, 毕刚.  注CO2井筒温度压力预测模型及影响因素研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.01.015
    [17] 吴事难, 张金龙, 丁士东, 刘建.  井下泡沫水泥浆密度计算模型修正, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.02.006
    [18] 尹虎, 李黔, 李建涛, 黄建智.  利用套管变形量进行地应力反演, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.03.011
    [19] 罗宇维, 朱江林, 李东, 方国伟, 凌伟汉.  温度和压力对井内流体密度的影响, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.02.006
    [20] 姚传进, 雷光伦, 吴川, 高达, 蒋宝云, 刘海庆.  高凝原油井筒温度场影响因素研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2011.05.016
  • 加载中
图(7) / 表ll (1)
计量
  • 文章访问数:  616
  • HTML全文浏览量:  215
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-15
  • 修回日期:  2020-02-21
  • 网络出版日期:  2020-06-11
  • 刊出日期:  2020-08-04

目录

    /

    返回文章
    返回