留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用随钻电磁波测井探测直井水力裂缝的正演模拟

谢媛 刘得军 李彩芳 翟颖 孙雨

谢媛, 刘得军, 李彩芳, 翟颖, 孙雨. 利用随钻电磁波测井探测直井水力裂缝的正演模拟[J]. 石油钻探技术, 2020, 48(2): 123-129. doi: 10.11911/syztjs.2019133
引用本文: 谢媛, 刘得军, 李彩芳, 翟颖, 孙雨. 利用随钻电磁波测井探测直井水力裂缝的正演模拟[J]. 石油钻探技术, 2020, 48(2): 123-129. doi: 10.11911/syztjs.2019133
XIE Yuan, LIU Dejun, LI Caifang, ZHAI Ying, SUN Yu. Forward Modeling in Hydraulic Fracture Detection by Means of Electromagnetic Wave Logging While Drilling in Vertical Wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 123-129. doi: 10.11911/syztjs.2019133
Citation: XIE Yuan, LIU Dejun, LI Caifang, ZHAI Ying, SUN Yu. Forward Modeling in Hydraulic Fracture Detection by Means of Electromagnetic Wave Logging While Drilling in Vertical Wells[J]. Petroleum Drilling Techniques, 2020, 48(2): 123-129. doi: 10.11911/syztjs.2019133

利用随钻电磁波测井探测直井水力裂缝的正演模拟

doi: 10.11911/syztjs.2019133
详细信息
    作者简介:

    谢媛(1994—),女,2016年毕业于中国石油大学(北京)测控技术与仪器专业,在读硕士研究生,主要从事电磁法探测水力裂缝的研究工作。E-mail:18810061267@163.com

    通讯作者:

    刘得军,liudj65@163.com

  • 中图分类号: P631.8+4

Forward Modeling in Hydraulic Fracture Detection by Means of Electromagnetic Wave Logging While Drilling in Vertical Wells

  • 摘要:

    为了解低渗透储层中油气资源的分布状况,更好地控制油气井产能,需要对水力压裂产生的裂缝进行系统研究。以电磁场理论为基础,建立了均质各向同性地层解析模型,再利用有限元软件建立了直井的地层与裂缝模型。在此基础上,对电磁波测井仪接收线圈之间感应电动势的振幅比和相位差进行了正演模拟。结果显示:裂缝位置处的信号振幅比与相位差曲线变化显著,相位差曲线分层明显;根据相位差曲线更容易分辨不同高度及含不同电导率支撑剂的裂缝;最敏感的影响因素是支撑剂电导率;当仪器源距为0.25 m、发射频率为400 kHz时,所获得的模拟响应结果更好。研究结果表明,利用随钻电磁波测井探测直井水力裂缝是可行的,这为直井水力裂缝探测和评价提供了一定的理论依据。

     

  • 图 1  均质各向同性地层振幅比和相位差与地层电导率的关系曲线

    Figure 1.  Relationship between amplitude ratio and phase difference in a homogeneous and isotropic formation

    图 2  不规则裂缝模型及网格划分

    Figure 2.  Irregular fracture model and meshing

    图 3  不同位置处的振幅比和相位差

    Figure 3.  Amplitude ratio and phase difference at different positions

    图 4  不同裂缝高度下的振幅比与相位差曲线

    Figure 4.  Amplitude ratio and phase difference at different fracture heights

    图 5  不同电导率支撑剂下的振幅比与相位差曲线

    Figure 5.  Amplitude ratio and phase difference for different electrical conductivity of proppant

    图 6  不同裂缝长度下的振幅比与相位差曲线

    Figure 6.  Amplitude ratio and phase difference at different fracturelLengths

    图 7  不同裂缝与井眼夹角下的振幅比与相位差曲线

    Figure 7.  Amplitude ratio and phase difference with different included angles between the fracture and borehol

    图 8  不同源距下的振幅比与相位差曲线

    Figure 8.  Amplitude ratio and phase difference at different source distances

    图 9  不同发射频率下的振幅比与相位差曲线

    Figure 9.  Amplitude ratio and phase difference at different transmitting frequencies

  • [1] 霍玉雁,岳喜洲,孙建孟. 测井资料在压裂设计中的应用[J]. 测井技术, 2008, 32(5): 446–450. doi: 10.3969/j.issn.1004-1338.2008.05.014

    HUO Yuyan, YUE Xizhou, SUN Jianmeng. Application of logging data in fracturing design[J]. Well Logging Technology, 2008, 32(5): 446–450. doi: 10.3969/j.issn.1004-1338.2008.05.014
    [2] XUE D, RABINOVICH M, BESPALOV F, et al. Characterization of fracture length and formation resistivity from array induction data[R]. SPWLA-2008-III, 2008,
    [3] HU G D, GELDMACHER I M, LIU R C. Effect of fracture orientation on induction logs: a modeling study[R]. SPE 133802, 2010.
    [4] PARDO D, TORRES-VERDNI C. Sensitivity analysis for the appraisal of hydrofractures in horizontal wells with borehole resistivity measurements[J]. Geophysics, 2013, 78(4): 209–222. doi: 10.1190/geo2013-0014.1
    [5] YANG K, TORRES-VERDIN C, YILMAZ A E. Detection and quantification of three-dimensional hydraulic fractures with horizontal borehole resistivity measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4605–4615. doi: 10.1109/TGRS.2015.2402656
    [6] 易新民,唐雪萍,梁涛,等. 利用测井资料预测判断水力压裂裂缝高度[J]. 西南石油大学学报(自然科学版), 2009, 31(5): 21–24. doi: 10.3863/j.issn.1674-5086.2009.05.006

    YI Xinmin, TANG Xueping, LIANG Tao, et al. Prediction and assessment of fracture height of hydraulic fracturing with logging data[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(5): 21–24. doi: 10.3863/j.issn.1674-5086.2009.05.006
    [7] 温伟. 补偿中子测井在水力压裂缝高检测中的应用[J[J]. 辽宁化工, 2013, 42(7): 828–830.

    WEN Wei. Application of compensated neutron log in fracture height detection after hydraulic fracturing[J]. Liaoning Chemical Industry, 2013, 42(7): 828–830.
    [8] 崔明月, 付海峰, 李永平, 等.声波监测裂缝起裂对近井裂缝几何形状的影响研究[C]//第四届全国低渗透油气藏压裂酸化技术研讨会论文集.北京: 中国石油勘探开发研究院, 2010: 53–63.

    CUI Mingyue, FU Haifeng, LI Yongping, et al. Study on the influence of acoustic monitoring of fracture initiation on near-well fracture geometry[C]// Proceedings of the 4th national symposium on fracturing and acidification technology for low permeability reservoirs. Beijing: China Petroleum Exploration and Development Research Institute, 2010: 53-63.
    [9] VEJCHODSKY T, SOLIN P. Discrete maximum principle for higher-order finite elements in 1D[J]. Mathematics of Computation, 2007, 76(260): 1833–1846. doi: 10.1090/S0025-5718-07-02022-4
    [10] 高杰,辛秀艳,陈文辉,等. 随钻电磁波电阻率测井之电阻率转化方法与研究[J]. 测井技术, 2008, 32(6): 503–507. doi: 10.3969/j.issn.1004-1338.2008.06.004

    GAO Jie, XIN Xiuyan, CHEN Wenhui, et al. Resistivity derivation in electromagnetic wave propagation resistivity logging while drilling[J]. Well Logging Technology, 2008, 32(6): 503–507. doi: 10.3969/j.issn.1004-1338.2008.06.004
    [11] 朱庚雪,刘得军,张颖颖,等. 基于hp-FEM的随钻电磁波测井仪器响应正演分析[J]. 石油钻探技术, 2015, 43(2): 63–70.

    ZHU Gengxue, LIU Dejun, ZHANG Yingying, et al. Forward modeling of responses of an ELWD tool based on hp-FEM[J]. Petroleum Drilling Techniques, 2015, 43(2): 63–70.
    [12] LIU Dejun, MA Zhonghua, XING Xiaonan, et al. Numerical simulation of LWD resistivity response of carbonate formation using self-adaptive hp-FEM[J]. Applied Geophysics, 2013, 10(1): 97–108. doi: 10.1007/s11770-013-0368-2
    [13] SHARMA M M, BASU S. Fracture diagnosis using electromagnetic methods: US20160282502[P]. 2016-09-29.
    [14] PARDO D, TORRES-VERDIN C, PASZYNSKI M. Numerical simulation of 3D EM borehole measurements using an hp-adaptive goal-oriented finite-element formulation[R]. SEG-2007-0653, 2007.
    [15] YANG Kai, CELIK E, TORRES-VERDIN C, et al. Detection and quantification of 3D hydraulic fractures with multi-component low-frequency borehole resistivity measurements[R]. SEG-2013-1213, 2013.
    [16] NAM M J, PARDO D, TORRES-VERDIN C. Simulation of borehole-eccentered triaxial induction measurements using a Fourierhpfinite-element method[J]. Geophysics, 2013, 78(1): 41–52.
    [17] 李辉,刘得军,刘彦昌,等. 自适应hp-FEM在随钻电阻率测井仪器响应数值模拟中的应用[J]. 地球物理学报, 2012, 55(8): 2787–2797. doi: 10.6038/j.issn.0001-5733.2012.08.030

    LI Hui, LIU Dejun, LIU Yanchang, et al. Application of self-adaptive hp-FEM in numerical simulation of resistivity logging-while-drilling[J]. Chinese Journal of Geophysics, 2012, 55(8): 2787–2797. doi: 10.6038/j.issn.0001-5733.2012.08.030
    [18] MA Zhonghua, LIU Dejun, LI Hui, et al. Numerical simulation of a multi-frequency resistivity logging-while-drilling tool using a highly accurate and adaptive higher-order finite element method[J]. Advances in Applied Mathematics & Mechanics, 2012, 4(4): 439–453.
  • 加载中
图(9)
计量
  • 文章访问数:  1016
  • HTML全文浏览量:  384
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-21
  • 修回日期:  2019-10-07
  • 网络出版日期:  2019-12-27

目录

    /

    返回文章
    返回