留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油基钻井液条件下西湖凹陷低孔低渗储层流体性质随钻快速识别方法

张国栋 鲁法伟 陈波 罗健 胡文亮 何玉春

张国栋, 鲁法伟, 陈波, 罗健, 胡文亮, 何玉春. 油基钻井液条件下西湖凹陷低孔低渗储层流体性质随钻快速识别方法[J]. 石油钻探技术, 2019, 47(5): 116-120. doi: 10.11911/syztjs.2019100
引用本文: 张国栋, 鲁法伟, 陈波, 罗健, 胡文亮, 何玉春. 油基钻井液条件下西湖凹陷低孔低渗储层流体性质随钻快速识别方法[J]. 石油钻探技术, 2019, 47(5): 116-120. doi: 10.11911/syztjs.2019100
ZHANG Guodong, LU Fawei, CHEN Bo, LUO Jian, HU Wenliang, HE Yuchun. A Fluid Properties while Drilling Rapid Identification Method under Oil-Based Drilling Fluid Conditions for Low Porosity and Low Permeability Reservoirs in the Xihu Sag[J]. Petroleum Drilling Techniques, 2019, 47(5): 116-120. doi: 10.11911/syztjs.2019100
Citation: ZHANG Guodong, LU Fawei, CHEN Bo, LUO Jian, HU Wenliang, HE Yuchun. A Fluid Properties while Drilling Rapid Identification Method under Oil-Based Drilling Fluid Conditions for Low Porosity and Low Permeability Reservoirs in the Xihu Sag[J]. Petroleum Drilling Techniques, 2019, 47(5): 116-120. doi: 10.11911/syztjs.2019100

油基钻井液条件下西湖凹陷低孔低渗储层流体性质随钻快速识别方法

doi: 10.11911/syztjs.2019100
基金项目: 国家科技重大专项“东海深层低渗–致密天然气勘探开发技术”(编号:2016ZX05027)资助
详细信息
    作者简介:

    张国栋(1984—),男,山东成武人,2006年毕业于中国石油大学(华东)资源勘查专业,高级工程师,主要从事石油测井技术研究及相关管理工作。E-mail:zhanggd4@cnooc.com.cn

  • 中图分类号: P631.8+11

A Fluid Properties while Drilling Rapid Identification Method under Oil-Based Drilling Fluid Conditions for Low Porosity and Low Permeability Reservoirs in the Xihu Sag

  • 摘要:

    为了解决西湖凹陷低孔低渗储层流体性质快速识别困难的问题,提出了基于油基钻井液条件的时移电阻率测井对比识别法。首先进行了油基钻井液滤失性试验,研究了其在低孔低渗储层的滤失特征;然后分析了油基钻井液条件下随钻电阻率测井时、钻井液滤液侵入不同深度和侵入不同类型地层后的地层电阻率变化特征。研究表明,油基钻井液存在一定的滤失,其滤失量和岩石物性、压差和时间都有一定关系;油基钻井液滤液不导电,其侵入储层后,如果驱替的是油气,随钻和复测电阻率基本一致;如果驱替的是地层水,则复测电阻率会大于随钻电阻率。因此,利用油基钻井液的高侵特性,基于时移测井理念,提出通过对比浅层实时电阻率与复测电阻率的差异快速识别流体性质的方法。该方法进行了现场应用,流体性质快速识别结果与后续电缆地层测试泵抽取样结果一致,验证了其可行性,具有推广应用价值。

     

  • 图 1  油基钻井液滤失量与侵入时间的关系

    Figure 1.  Relationship between fluid loss and intrusion time of oil-based drilling fluid

    图 2  地层刚钻开和钻开一段时间后的井筒环境

    Figure 2.  Wellbore environments after penetrating the formation soon and drilling for a while

    图 3  P16H探测深度与被探测地层电阻率的关系曲线

    Figure 3.  Relationship curve between P16H detection depth and the resistivity of measured formation

    图 4  X1井随钻电阻率实时值与复测值的对比

    Figure 4.  Comparison on the resistivity while drilling real-time measurement and the re-tested value in Well X1

    图 5  X1井井深4 471.50 m MDT泵抽流体性质综合识别

    Figure 5.  Comprehensive identification of 4 471.50 m MDT pumping fluids properties in Well X1

    图 6  X2井随钻电阻率实时值与复测值的对比

    Figure 6.  Comparison on the resistivity while drilling real-time measurement and the re-tested value in Well X2

    图 7  X2井井深4 321.20和4 333.00 m MDT泵抽流体性质综合识别

    Figure 7.  Comprehensive identification of MDT pumping fluid properties at 4 321.20 and 4 333.00 m in Well X2

    表  1  油基钻井液滤失性试验所用岩心的主要参数

    Table  1.   Core parameters of oil-based drilling fluid filtration test

    编号长度/cm直径/cm渗透率/mD钻井液密度/(kg·L–1
    17.392.491991.18
    27.342.531981.32
    下载: 导出CSV

    表  2  油基钻井液滤液侵入不同地层后的电阻率变化特征

    Table  2.   Characteristics of resistivity change after oil-based drilling fluid filtrate invaded different formations

    地层类型钻井液滤液侵入情况电阻率变化情况ARC测井仪测量结果
    油气层一定压差下侵入不变P16H实时≈P16H复测
    水层一定压差下侵入升高P16H实时<P16H复测
    含油气水层或同层一定压差下侵入升高P16H实时<P16H复测
    致密层基本无侵入不变P16H实时≈P16H复测
    下载: 导出CSV
  • [1] 张国华. 西湖凹陷高压形成机制及其对油气成藏的影响[J]. 中国海上油气, 2013, 25(2): 1–7.

    ZHANG Guohua. Origin mechanism of high formation pressure and its influence on hydrocarbon accumulation in Xihu Sag[J]. China Offshore Oil and Gas, 2013, 25(2): 1–7.
    [2] 张国栋. 气测录井全量正演计算方法判别低孔低渗储层含气性[J]. 中国海上油气, 2017, 29(1): 46–51.

    ZHANG Guodong. Gas bearing interpretation method for low porosity and low permeability reservoir with total gas forward calculation method of gas logging data[J]. China Offshore Oil and Gas, 2017, 29(1): 46–51.
    [3] 张国栋, 庄春喜, 黑创. 东海西湖凹陷探井储层压后缝高评价新方法[J]. 石油钻探技术, 2016, 44(5): 122–126.

    ZHANG Guodong, ZHUANG Chunxi, HEI Chuang. New techniques for fracture height determination in exploration wells drilled in the Xihu Sag, East China Sea[J]. Petroleum Drilling Techniques, 2016, 44(5): 122–126.
    [4] 郑小敏,成志刚,林伟川,等. 致密砂岩气藏启动压差与可动水变化规律实验研究[J]. 测井技术, 2014, 38(1): 33–38.

    ZHENG Xiaomin, CHENG Zhigang, LIN Weichuan, et al. Change law experimental study on trigger pressure difference and mobile water in tight sand gas reservoir[J]. Well Logging Technology, 2014, 38(1): 33–38.
    [5] 李霞,赵文智,周灿灿,等. 低孔低渗碎屑岩储集层双孔隙饱和度模型[J]. 石油勘探与开发, 2012, 39(1): 82–91.

    LI Xia, ZHAO Wenzhi, ZHOU Cancan, et al. Dual-porosity saturation model of low-porosity and low-permeability clastic reservoirs[J]. Petroleum Exploration and Development, 2012, 39(1): 82–91.
    [6] 王翠平.致密含气砂岩储层参数及可动流体的定量评价[D].长春: 吉林大学, 2013.

    WANG Cuiping. Quantitative evaluation of reservoir parameters and movable fluid in tight gas sandstone[D]. Changchun: Jilin University, 2013.
    [7] 杨涛涛,王霞,何文昌. 低阻油气层成因及测井识别评价方法分析[J]. 油气地球物理, 2017, 15(4): 1–6.

    YANG Taotao, WANG Xia, HE Wenchang. Analysis of genesis of low resistivity oil gas layer and its logging identification evaluation[J]. Petroleum Geophysics, 2017, 15(4): 1–6.
    [8] 叶礼友,高树生,杨洪志,等. 致密砂岩气藏产水机理与开发对策[J]. 天然气工业, 2015, 35(2): 41–46. doi: 10.3787/j.issn.1000-0976.2015.02.006

    YE Liyou, GAO Shusheng, YANG Hongzhi, et al. Water production mechanism and development strategy of tight sandstone gas reservoirs[J]. Natural Gas Industry, 2015, 35(2): 41–46. doi: 10.3787/j.issn.1000-0976.2015.02.006
    [9] 张旭,姜瑞忠,崔永正,等. 考虑束缚水时变的致密气藏数值模拟研究[J]. 中国海上油气, 2017, 29(5): 82–89.

    ZHANG Xu, JIANG Ruizhong, CUI Yongzheng, et al. Numerical simulation study on tight gas reservoir considering the variation of irreducible water saturation with time[J]. China Offshore Oil and Gas, 2017, 29(5): 82–89.
    [10] 鹿克峰,徐振中,冯景林. 一种定量表征油水过渡区饱和度分布的实用方法[J]. 中国海上油气, 2011, 23(6): 387–390. doi: 10.3969/j.issn.1673-1506.2011.06.008

    LU Kefeng, XU Zhenzhong, FENG Jinglin. A practical method to quantitatively characterize oil saturation distribution in oil-water transition zones[J]. China Offshore Oil and Gas, 2011, 23(6): 387–390. doi: 10.3969/j.issn.1673-1506.2011.06.008
    [11] 陈福煊. 电阻率时间推移测井解释方法研究[J]. 天然气工业, 1996, 16(1): 25–28.

    CHEN Fuxuan. Investigation on the interpretation method of resistivity time-lapse logging[J]. Natural Gas Industry, 1996, 16(1): 25–28.
    [12] 孙建孟,张海涛,马建海,等. 用时间推移测井计算原始含水饱和度新方法研究[J]. 测井技术, 2003, 27(3): 217–220. doi: 10.3969/j.issn.1004-1338.2003.03.010

    SUN Jianmeng, ZHANG Haitao, MA Jianhai, et al. On a new method for calculating in-situ water saturation with time-lapse logging[J]. Well Logging Technology, 2003, 27(3): 217–220. doi: 10.3969/j.issn.1004-1338.2003.03.010
    [13] 吴飞.低孔渗砂岩储层泥浆侵入模拟及侵入特征研究[D].青岛: 中国石油大学(华东), 2015.

    WU Fei. Imitation and characteristic analysis of mud filtrate invasion in low porous and low permeable sandstone reservoir[D]. Qingdao: China University of Petroleum (Huadong), 2015.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  733
  • HTML全文浏览量:  325
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-07
  • 修回日期:  2019-08-15
  • 网络出版日期:  2019-08-28

目录

    /

    返回文章
    返回