Key Drilling Fluid Technology in the Ultra Deep Section of Well Ying-1 in the Shunbei Oil and Gas Field
-
摘要:
鹰1井是顺北油气田的一口超深重点风险预探井,设计井深9 016.85 m(垂深8 603.00 m)。该井超深井段志留系柯坪塔格组与奥陶系桑塔木组等硬脆性泥岩地层、志留系裂缝性地层和奥陶系破碎性地层,在钻进过程中易出现井眼失稳、井漏、坍塌掉块等井下故障。为此,通过室内试验研究,分析了该井超深井段硬脆性泥岩地层井眼失稳机理、强压力敏感性裂缝性地层漏失原因及破碎性碳酸盐岩地层井眼失稳原因,应用“多元协同”井壁稳定基本理论,构建了SMHP–1强抑制强封堵钻井液,并制定了针对性强的防塌防漏技术措施。该井顺利钻穿大段硬脆性泥岩、裂缝性地层和破碎性地层,未发生井眼失稳及钻井液漏失,顺利钻至井深8 588.00 m完钻,创亚洲陆上井深最深纪录。现场应用表明,SMHP–1强抑制强封堵钻井液能够解决深部地层大段泥岩及破碎性地层的井眼失稳与漏失难题,为国内外深井超深井安全钻进提供了技术借鉴。
Abstract:Well Ying-1 is an ultra-deep key investigative risk management pre-exploration well deployed by Sinopec in the Shunbei Oil and Gas Field with designed well depth of 9 016.85 m (TVD 8 603.00 m). Drilling the welln encountered downhole problems including wellbore instability, well leakage and borehole wall sloughing. They also easily occur in drilling hard brittle mudstone formations, such as the Silurian Kepingtage Formation and the Ordovician Sangtamu Formation. For this reason, laboratory studies have been carried out to analyze mechanisms contributing to the instability of large section of hard brittle mudstone shale. As such, the reasons for leakage in the Silurian high pressure sensitive fissured formation, and the reasons for instability in Ordovician fractured formations. Based on the basic theory of " multivariate synergistic” wellbore stability, the drilling fluid system SMHP-1 with strong inhibition and sealing capacity was constructed, and the technical measures of mud loss and borehole wall collapse prevention were worked out. The well successfully drilled through a large section of hard brittle mudstone and broken formation to a total depth of 8 588 m without borehole wall instability and drilling fluid loss, setting a record of the deepest onshore well depth in Asia. The field application showed that the drilling fluid system SMHP-1 could effectively solve the problems of wellbore stability and leakage in deep mudstone and broken formations by strong inhibition and sealing capacity, and provide best practices for safe drilling of deep or ultra-deep wells at home and abroad.
-
表 1 鹰1井深部泥岩的矿物组成
Table 1. Mineral composition of deep mudstone in Well Ying–1
编号 全岩矿物组成,% 黏土矿物组成,% 石英 长石 方解石 铁白云石 黄铁矿 黏土矿物 伊利石 蒙脱石 伊/蒙混层 绿泥石 高岭石 1 37.10 11.20 6.80 5.40 4.90 30.20 57.10 27.30 3.20 6.50 12.80 2 38.90 12.60 5.20 1.30 5.70 38.40 44.60 24.40 11.90 7.00 13.00 3 45.10 10.40 3.90 4.70 4.20 32.40 58.20 16.80 11.30 4.90 9.30 4 29.90 14.10 7.30 7.60 3.60 30.90 52.60 19.80 4.30 5.50 10.20 5 33.70 13.90 5.20 7.20 4.00 38.50 49.10 25.60 9.50 6.20 14.20 6 38.40 12.80 4.90 5.70 3.80 36.70 43.20 22.80 11.20 7.80 10.20 7 40.30 11.90 3.60 6.30 3.20 39.80 47.10 22.20 8.20 4.60 13.50 8 41.40 12.20 3.20 8.60 2.40 27.50 52.00 19.90 10.70 6.30 8.50 9 39.60 12.60 4.10 3.80 7.80 22.80 44.10 26.40 7.70 6.00 9.70 10 37.90 13.60 4.70 3.90 4.10 40.10 47.80 25.20 8.20 8.20 11.10 平均 38.23 12.53 4.89 5.45 4.37 33.73 49.58 23.04 8.62 6.30 11.25 表 2 鹰1井柯坪塔格组和桑塔木组地层泥岩理化性能
Table 2. Physical and chemical properties of mudstone in Kepingtage Formation and Sangtamu Formation of Well Ying–1
岩样编号 地层 比表面积/(m2·g–1) 总吸水量/(g·g–1) 比亲水量/(mg·m–2) 清水回收率,% 清水膨胀率,% 1 柯坪塔格组 54.12 0.50 9.21 76.35 11.6 2 62.53 0.62 9.93 72.32 13.8 3 50.80 0.51 10.13 80.98 13.2 4 桑塔木组 57.72 0.62 10.72 75.53 14.7 5 51.91 0.49 9.36 73.95 12.8 6 68.92 0.62 9.07 81.73 13.2 注:蒙脱石比亲水量为9.91 mg/m2,伊利石比亲水量为11.62 mg/m2。 表 3 随钻堵漏剂中封堵材料的加量配比
Table 3. Concentration ratio of plugging materials in lost circulation additive while drilling
配方 刚性架桥及充填材料加量,% 弹性可变形封堵材料加量,% 惰性纤维材料加量,% 软化封堵材料加量,% 1 2.0 1.0 1.5 0.5 2 2.0 2.0 0.5 0.5 3 2.0 1.5 1.0 0.5 4 3.0 1.0 0.5 0.5 5 3.0 0.5 1.0 0.5 6 3.0 0.5 0.5 1.0 -
[1] 赵志国,白彬珍,何世明,等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术, 2017, 45(6): 8–13.ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimization of fast drilling technology for ultra-deep wells in the Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 8–13. [2] 张平. 顺北蓬1井ϕ444.5 mm长裸眼井筒强化钻井液技术[J]. 石油钻探技术, 2018, 46(3): 27–33.ZHANG Ping. Wellbore enhancing technology for ϕ444.5 mm openhole section in Well SHBP1 by means of drilling fluid optimization[J]. Petroleum Drilling Techniques, 2018, 46(3): 27–33. [3] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475–499. doi: 10.1306/12190606068 [4] SIMPSON J P, WALKER T O, JIANG G Z. Environmentally acceptable water-base mud can prevent shale hydration and maintain borehole stability[R]. SPE 27496, 1995. [5] 李佳,邱正松,宋丁丁,等. 井壁强化作用影响因素的数值模拟[J]. 钻井液与完井液, 2017, 34(2): 1–8. doi: 10.3969/j.issn.1001-5620.2017.02.001LI Jia, QIU Zhengsong, SONG Dingding, et al. Numeric simulation of factors affecting the strengthening of borehole wall[J]. Drilling Fluid & Completion Fluid, 2017, 34(2): 1–8. doi: 10.3969/j.issn.1001-5620.2017.02.001 [6] 于雷,张敬辉,刘宝锋,等. 微裂缝发育泥页岩地层井壁稳定技术研究与应用[J]. 石油钻探技术, 2017, 45(3): 27–31.YU Lei, ZHANG Jinghui, LIU Baofeng, et al. Study and application of borehole stabilization technology in shale strata containing micro-fractures[J]. Petroleum Drilling Techniques, 2017, 45(3): 27–31. [7] 俞杨烽. 富有机质页岩多尺度结构描述及失稳机理[D]. 成都: 西南石油大学, 2013.YU Yangfeng. Multi-scale structure description and borehole instability mechanism of organic rich shale[D]. Chengdu: Southwest Petroleum University, 2013. [8] ZHAO Tianyi, LI Xiangfang, ZHAO Huawei, et al. Molecular simulation of adsorption and thermodynamic properties on type Ⅱ kerogen: influence of maturity and moisture content[J]. Fuel, 2016, 190: 198–207. [9] 牛晓,潘丽娟,甄玉辉,等. SHB1-6H井长裸眼钻井液技术[J]. 钻井液与完井液, 2016, 33(5): 30–34.NIU Xiao, PAN Lijuan, ZHEN Yuhui, et al. Drilling fluid technology for long open hole section of Well SHB1-6H[J]. Drilling Fluid & Completion Fluid, 2016, 33(5): 30–34. [10] SIGAL R F. A note on the intrinsic porosity of organic material in shale gas reservoir rocks[J]. Petrophysics, 2013, 54(3): 236–239. [11] 金军斌. 塔里木盆地顺北区块超深井火成岩钻井液技术[J]. 石油钻探技术, 2016, 44(6): 17–23.JIN Junbin. Drilling fluid technology for igneous rocks in ultra-deep wells in the Shunbei Area, Tarim Basin[J]. Petroleum Drilling Techniques, 2016, 44(6): 17–23. [12] 赵佩,李贤庆,田兴旺,等. 川南地区龙马溪组页岩气储层微孔隙结构特征[J]. 天然气地球科学, 2014, 25(6): 947–956.ZHAO Pei, LI Xianqing, TIAN Xingwang, et al. Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the Southern Sichuan Basin[J]. Natural Gas Geoscience, 2014, 25(6): 947–956. [13] 薛世峰,马国顺,葛洪魁,等. 液-固-水化耦合形式的井眼稳定性模型研究[J]. 石油钻探技术, 2007, 35(1): 41–44. doi: 10.3969/j.issn.1001-0890.2007.01.012XUE Shifeng, MA Guoshun, GE Hongkui, et al. Study of a fluid-solid-wetting coupling wellbore stability model[J]. Petroleum Drilling Techniques, 2007, 35(1): 41–44. doi: 10.3969/j.issn.1001-0890.2007.01.012 [14] 宋世超. 泥页岩井壁稳定的力学与化学协同作用研究与应用[D]. 武汉: 长江大学, 2013.SONG Shichao. Mechanical and chemical shale stability research and application of collaborative action[D]. Wuhan: Yangtze University, 2013. [15] 李芷,贾长贵,杨春和,等. 页岩水力压裂水力裂缝与层理面扩展规律研究[J]. 岩石力学与工程学报, 2015, 34(1): 12–20.LI Zhi, JIA Changgui, YANG Chunhe, et al. Propagation of hydraulic fissures and bedding planes in hydraulic fracturing of shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 12–20. [16] SAVARI S, WHITFILL D L, JAMISON D E, et al. A method to evaluate lost circulation materials-investigation of effective wellbore strengthening applications[R]. SPE 167977, 2014. [17] 卢运虎,陈勉,安生. 页岩气井脆性页岩井壁裂缝扩展机理[J]. 石油钻探技术, 2012, 40(4): 13–16. doi: 10.3969/j.issn.1001-0890.2012.04.003LU Yunhu, CHEN Mian, AN Sheng. Brittle shale wellbore fracture propagation mechanism[J]. Petroleum Drilling Techniques, 2012, 40(4): 13–16. doi: 10.3969/j.issn.1001-0890.2012.04.003 [18] 李益寿. 柯193井井壁稳定钻井液技术应用研究[J]. 新疆石油天然气, 2018, 14(2): 37–41. doi: 10.3969/j.issn.1673-2677.2018.02.008LI Yishou. Study on application for hole stability of Ke 193 Well[J]. Xinjiang Oil & Gas, 2018, 14(2): 37–41. doi: 10.3969/j.issn.1673-2677.2018.02.008 [19] 张金波,鄢捷年,赵海燕. 优选暂堵剂粒度分布的新方法[J]. 钻井液与完井液, 2004, 21(5): 4–7. doi: 10.3969/j.issn.1001-5620.2004.05.002ZHANG Jinbo, YAN Jienian, ZHAO Haiyan. Optimization of bridging particle size distribution of drilling fluid for formation protection[J]. Drilling Fluid & Completion Fluid, 2004, 21(5): 4–7. doi: 10.3969/j.issn.1001-5620.2004.05.002 [20] 蒋官澄,鄢捷年,王富华,等. 新型屏蔽暂堵技术在大宛齐地区的应用[J]. 石油钻探技术, 1999, 27(6): 21–23. doi: 10.3969/j.issn.1001-0890.1999.06.008JIANG Guancheng, YAN Jienian, WANG Fuhua, et al. Applications of temporary plugging techniques in Dawanqi Area[J]. Petroleum Drilling Techniques, 1999, 27(6): 21–23. doi: 10.3969/j.issn.1001-0890.1999.06.008 [21] 张金波,鄢捷年. 钻井液暂堵剂颗粒粒径分布的最优化选择[J]. 油田化学, 2005, 22(1): 1–5. doi: 10.3969/j.issn.1000-4092.2005.01.001ZHANG Jinbo, YAN Jienian. Optimization of particle size distribution for temporarily plugging/shielding agents in water base reservoir drilling fluids[J]. Oilfield Chemistry, 2005, 22(1): 1–5. doi: 10.3969/j.issn.1000-4092.2005.01.001 [22] 舒勇,鄢捷年,宋付英,等. 暂堵剂图解优化新方法在钻井液设计中的应用[J]. 石油钻探技术, 2008, 36(6): 48–51. doi: 10.3969/j.issn.1001-0890.2008.06.011SHU Yong, YAN Jienian, SONG Fuying, et al. The application of new graphical optimizing method of temporary plugging particle size distribution in drilling fluids design[J]. Petroleum Drilling Techniques, 2008, 36(6): 48–51. doi: 10.3969/j.issn.1001-0890.2008.06.011 -