An Prediction Method for Determining the Maximum von Mises Stress in Casing Based on SVM
-
摘要:
为了预测非均匀地应力条件下不居中套管的最大应力,提高套管安全性,研究了基于支持向量机(SVM)的套管最大von Mises应力预测方法。首先确定了影响套管最大应力的关键因素,包括非均匀地应力、水泥环的弹性模量及泊松比、套管偏心距等8个因素;然后利用ANSYS软件构建了套管应力实验样本;最后建立了
ε−SVR 模型,实现了套管最大应力的预测。通过自学习,基于径向基核函数的SVM回归方法对于训练样本达到了很好的精度,5个测试样本的平均相对误差仅为1.32%,具有较好的预测精度,满足工程需求,且可以实现非均匀地应力条件下不居中套管最大应力的快速求解。研究结果为现场安全施工提供了理论依据。-
关键词:
- 支持向量机 /
- 非均匀地应力 /
- 套管偏心距 /
- von Mises应力
Abstract:In order to predict the maximum stress of uncentered casing under non-uniform in-situ stress and improve the safety of casing, a prediction method of casing’s maximum von Mises stress based on artificial intelligence SVM is studied. First, the key factors affecting the maximum stress of casing are determined, including non-uniform geologic stress, elastic modulus and Poisson's ratio of cement sheath, eccentricity of casing, etc. Then the "experimental" samples of casing stress are constructed by using ANSYS software. Finally the
ε−SVR model is established to realize the prediction of casing’s maximum stress. Through self-learning, the SVM regression method based on RBF kernel achieves good accuracy for training samples. For the five test samples, the average relative error is only 1.32%, which means that this method can meet the needs of engineering application. In particular, this method can be used to quickly solve the maximum stress of uncentered casing under non-uniform in-situ stress.The research results provide theoretical basis for site safety construction. -
随着固井技术的发展,超低密度水泥浆得到广泛应用[1-2],尤其是针对低压易漏、密度窗口窄的层位,超低密度水泥浆解决了水泥返高不够、固井漏失等问题,并显著提高了固井质量[3]。如东胜气田储层是典型的低压、低渗、致密层段,由于地层承压能力低,钻井、固井过程中易发生漏失,杭锦旗区块刘家沟组、石千峰组等地层的承压当量密度最低达1.10 kg/L,通过应用超低密度水泥浆,降低了固井漏失率,保证了水泥返高。但超低密度水泥浆的应用也给固井质量评价带来了一系列难题[4-5]。首先是超低密度水泥环的强度、声学特性与测井响应的关系不明确,一方面,随着水泥环密度的降低,其强度和声速也降低,套管与水泥环交界面的声耦合性就会变差,声幅测井响应表现为套管波变强,地层波变弱[6-8];另一方面,漂珠等减轻材料对水泥环的强度和声学特性有一定的影响。其次是超低密度水泥浆固井质量评价指标不明确[9-11],现有标准《固井质量评价方法》(SY/T 6592—2016)只给出了水泥浆密度在1.30 kg/L以上的固井质量评价相对声幅,对于密度低于1.30 kg/L的超低密度水泥浆无明确的评价指标[6];国内外学者针对低密度水泥浆固井质量评价方法进行了大量研究,但未系统研究超低密度水泥浆固井质量评价方法。为此,笔者通过开展室内试验研究,揭示超低密度水泥石的强度和声学特性,结合理论分析,开展了超低密度水泥浆固井质量评价方法研究,得出了科学的评价指标,可准确评价超低密度水泥浆固井质量,为后续作业决策提供科学依据,为安全成井提供技术支持。
1. 试验材料与方法
1.1 试验材料和仪器
试验材料主要包括G级油井水泥、漂珠1、漂珠2、漂珠3、微硅、降滤失剂、分散剂和水等,全部材料及配方均与现场保持一致。
试验仪器主要包括高速搅拌器、密度计、六速旋转黏度仪、稠化仪、高温高压滤失仪、恒温养护釜、抗压强度测试仪和声速测试仪等。
1.2 试验方法
首先,设计不同密度的水泥浆配方(设计的7种配方见表1),并配制得到水泥浆;然后,按照《油井水泥性能试验方法》(SY/T 6466—2016)测试和验证不同密度水泥浆的基础性能,包括密度、流变性、滤失量和稠化时间等[12];最后,将配制好的水泥浆体注入多组5cm×5cm×5cm养护模具中,分别置于25,50和80 ℃的水浴中养护18,24,48,72,120,240和720 h后,测量养护试块的抗压强度、纵波声速和横波声速。
表 1 声学和强度特性试验用超低密度水泥浆配方Table 1. Formula of ultra-low-density cement slurry for measurement of acoustic and strength properties配方 密度/(kg·L−1) 水泥浆各成分含量,% G级水泥 漂珠1 漂珠2 微珠3 微硅 水 早强剂 降滤失剂 减阻剂 1 1.10 100 30 0 34 30 250 4.50 5.00 0.30 2 1.15 100 30 0 30 30 245 4.00 4.50 0.30 3 1.20 100 27 25 0 20 180 4.00 4.00 0.30 4 1.25 100 25 22 0 20 140 4.00 3.50 0.25 5 1.33 100 36 0 0 10 120 3.30 1.40 0.20 6 1.50 100 15 0 0 5 70 4.00 4.00 0.30 7 1.90 100 0 0 0 0 44 0 0.50 0.10 2. 水泥石强度与声学特性影响因素分析
2.1 温度
温度是影响超低密度水泥石强度和声学特性发展规律的重要因素[13-15]。以密度1.33 kg/L的超低密度水泥浆为例,按照1.2节所述试验方法,得出各项试验数据,并绘制得到水泥石抗压强度和纵横波声速发展曲线(见图1和图2)。从图1和图2可以看出,水泥石的抗压强度、纵波声速和横波声速均与养护时间正相关,且在较短时间内抗压强度和声速就会达到较大值,之后抗压强度和声速增大趋势变缓并逐渐趋于稳定。水泥石抗压强度和声速的发展速率与温度同样呈正相关关系,即温度越高,水泥石抗压强度和声速趋于稳定的时间越短。水泥石在50和80 ℃温度下养护 72 h后,其抗压强度和声速基本可达到养护720 h时的85%以上;但在25 ℃温度下养护200 h时的抗压强度和声速才能达到养护720 h时的85%以上;养护200 h以后,抗压强度和声速不同养护温度下的发展规律基本一致。
以上研究表明,温度是影响水泥水化反应速率的重要因素,温度越高,水化反应速率越大,这就导致前期水泥石的抗压强度和声速变化速率受温度影响较大;但不同温度条件下的水泥水化产物类型基本相同,随着养护时间增长,水泥水化反应趋于稳定,表现为不同温度条件下抗压强度和纵横波声速的变化速率较小,且无限接近水泥石的最终抗压强度和声速,即养护后期其抗压强度和声速受温度影响不大[11]。
2.2 水泥浆密度
密度是影响超低密度水泥石强度和声学特性变化规律的另一重要因素。在养护温度80 ℃、养护时间72 h条件下,按照1.2节所述试验方法,测量表1中7个配方所对应水泥石的抗压强度和声速,根据所得数据绘制得到水泥石抗压强度和声速随水泥浆密度的变化曲线,见图3和图4。由图3和图4可以看出,在其他条件相同的情况下,超低密度水泥石的抗压强度和声速与水泥浆密度正相关,即水泥浆密度越高,抗压强度和纵横波声速越大。
分析认为,水泥浆的密度越高,水泥浆中的水泥含量越高,而漂珠等减轻材料含量就会越少,且水泥石更加致密,孔隙度更低,导致其抗压强度和纵横波声速随水泥浆密度升高而升高[13]。
2.3 水泥石声学特性与强度特性之间的关系
水泥石抗压强度与声速正相关,通常抗压强度越高,对应的声速也越高。统计分析不同养护条件下的全部试验数据,对不同密度超低密度水泥浆形成水泥石的抗压强度和纵横波声速进行拟合,结果如图5和图6所示。从图5和图6可以看出,超低密度水泥石抗压强度与纵波、横波声速均呈指数关系。
对图5和图6的水泥石抗压强度与纵波、横波声速进行拟合,可得:
p=aebvp (1) p=cedvs (2) 式中:p为水泥石的抗压强度,MPa;
vp 为水泥石的纵波声速,m/s;vs 为水泥石的横波声速,m/s。根据试验所得数据,得出抗压强度与纵横波声速的拟合关系,见表2。
表 2 纵横波声速与抗压强度的拟合关系式Table 2. Fitting relationship between compressive strength and acoustic velocity of P-waves and S-waves序号 密度/(kg·L–1) 声波速度与抗压强度关系式 相关系数 1 1.10 p=0.002e0.0039vp R2=0.989 5 p=0.0019e0.0034vs R2=0.964 9 2 1.15 p=0.0055e0.0034vp R2=0.941 7 p=0.0145e0.0055vs R2=0.937 0 3 1.20 p=0.0019e0.0035vp R2=0.891 2 p=0.021e0.0045vs R2=0.860 7 4 1.25 p=0.0618e0.0021vp R2=0.920 6 p=0.0356e0.0041vs R2=0.955 4 5 1.33 p=0.0035e0.0034vp R2=0.900 6 p=0.0017e0.0067vs R2=0.911 3 分析认为,水泥水化过程中,固相水化产物含量逐渐增多,孔隙度不断减小,抗压强度和声速均增大。水化反应前期,固相含量增加迅速,水泥石的孔隙度快速减小,造成声速快速增大,但此时水泥石整体骨架结构较弱,且水泥水化产物本身强度偏低,造成抗压强度的发展速率要慢于声速;水泥水化反应中后期,水泥石的固相含量已经趋于稳定,孔隙度变化小,但是水化产物本身的强度更高,水泥石的骨架结构也变得较强,导致水泥石声速增加较小,而抗压强度增幅较大。同时,减轻材料的种类和加量会对水泥石的强度和声速产生一定的影响,表现为不同体系水泥浆形成水泥石的强度和声学特性存在一定的差别[14]。
3. 超低密度水泥固井质量评价改进方法
超低密度水泥石声学特性的差异性会影响测井响应,进而对固井质量评价指标的科学性造成一定影响[16],因此通过对比不同胶结指数下的声幅,对超低密度水泥浆固井质量评价相对声幅进行了定量校正。该超低密度水泥浆固井质量评价相对声幅改进算法原理为:根据不同密度水泥石的强度和声学特性进行模拟计算,找出不同胶结情况下超低密度水泥浆固井测井响应和常规密度水泥浆固井测井响应的差别,结合常规密度水泥浆固井质量评价指标,对超低密度水泥浆固井质量评价相对声幅进行校正。其具体过程如下:
1)计算水泥完全胶结时的泄露兰姆波衰减率,计算公式为[16]:
αT=3.30ρh[(59002vp2−1)−12+(59002vs2−1)12] (3) 式中:
αT 为泄漏兰姆波衰减率,dB/m;ρ 为固井水泥浆密度,g/cm3;h 为套管平板厚度,cm。为了建立固井质量评价相对声幅与抗压强度的关系,将式(1)、式(2)代入式(3),得到修正后的泄露兰姆波衰减率表达式:
αT=3.30ρh[(5900b2(lnp−lna)2−1)−12+(5900d2(lnp−lnc)2−1)12] (4) 2)计算胶结中等的上限和下限声幅。分别计算胶结指数为0.8和0.6时的测井声幅:
Af0.8=10−0.8(6.25+αT)l20A0 (5) Af0.6=10−0.6(6.25+αT)l20A0 (6) 式中:
l 为测井源距,m;Af0.8 为胶结指数为0.8时接收到的理论声幅,mV;Af0.6 为胶结指数为0.6时接收到的理论声幅,mV;A0 为发射器发射声波的声幅,mV。3)计算校正系数。根据式(1)—式(6),分别计算待校核密度水泥浆固井的理论测井声幅和常规密度水泥浆固井的理论测井声幅,并进行对比分析,得到改进系数:
λ0.8=A3A1 (7) λ0.6=A4A2 (8) 式中:
λ0.8 为胶结指数为0.8时对应的胶结质量中等下限的改进系数;λ0.6 为胶结指数为0.6时对应的胶结质量中等上限的改进系数;A1 为胶结指数为0.8时常规密度水泥浆固井接收到的理论声幅,mV;A2 为胶结指数为0.6时常规密度水泥浆固井接收到的理论声幅,mV;A3 为胶结指数为0.8时待校核密度水泥浆固井接收到的理论声幅,mV;A4 为胶结指数为0.6时待校核密度水泥浆接收到的理论声幅,mV。4)校正超低密度水泥浆固井质量评价相对声幅。综合考虑改进系数和常规密度水泥浆固井质量评价相对声幅,得出改进后的超低密度水泥浆固井质量评价相对声幅。相对声幅≤0.15
λ0.8 时,为优质;0.15λ0.8 <相对声幅≤0.30λ0.6 时,为中等;相对声幅>0.30λ0.6 时,为不合格。4. 相对声幅校正图版建立与验证
以东胜气田三级井身结构为参考,选取计算参数如下:测井源距1.00 m,套管外径177.8 mm,套管壁厚10.36 mm。结合表2中超低密度水泥石抗压强度与声速关系的拟合关系式,校正超低密度水泥浆固井质量评价相对声幅,得到基于抗压强度的超低密度水泥浆固井质量评价相对声幅校正图版(见图7)。
从图7可以看出:1)对于同一密度水泥浆,固井质量评价相对声幅随抗压强度升高而减小,即抗压强度越高,相对声幅越小,但当抗压强度升至一定值时,相对声幅趋于稳定;2)相同抗压强度条件下,固井质量评价相对声幅随着水泥浆密度升高而减小,即水泥浆密度越高,相对声幅越小。
为了验证该方法的可靠性,用其校核密度为1.33 kg/L的超低密度水泥浆固井质量评价相对声幅,按照井底温度为80 ℃、测井时间为72 h计算,此时评价中等的相对声幅在23.0%~43.5%,与行业标准《固井质量评价方法》(SY/T 6592—2016)给出的评价中等的相对声幅22%~45%较为接近,且校核后的评价相对声幅范围更小,具有较好的针对性。
实际应用时,首先根据井内温度设置水泥石试块养护条件;然后根据现场测井时间安排,测量同等养护时间下水泥石的抗压强度;最后根据图版校核评价相对声幅。如东胜气田72井区某井为二开结构定向井,二开钻井过程中多次发生漏失,为了防止固井漏失,采用密度1.15 kg/L的水泥浆作为领浆,封固0~2 332 m井段,固井过程中未见明显漏失,水泥浆一次上返至地面。根据测井时间为72 h和井底温度为70℃等固井质量评价条件,可知室内同等养护条件下水泥石的抗压强度约为7.3 MPa,应用校核图版,得到超低密度水泥浆封固段固井质量评价优质的相对声幅为不大于27%,评价中等的相对声幅为27%~44%,评价差的相对声幅大于44%。
采用此评价相对声幅进行该段固井质量评价,0~340 m井段相对声幅平均为41%,评价为中等;340~1 060 m井段相对声幅平均为32%,评价为中等;1 060~1 990 m井段相对声幅平均为20%,评价为优质;1 990~2 332 m井段相对声幅平均为10%,评价为优质。超低密度水泥浆固井的优质井段占比达46.7%,固井质量整体评价为优质。该井固井施工过程中未见漏失,后期测试、采气等作业环节中未发现管外气窜和井口带压现象,说明固井质量满足生产要求。
5. 结 论
1)通过室内试验,揭示了超低密度水泥石的抗压强度、纵横波声速与温度和密度等参数正相关,且超低密度水泥石的纵横波声速与抗压强度存在较好的指数关系。但对于不同密度的水泥浆体系,回归出的关系式存在着一定的差异。
2)根据理论分析结果,建立了校核超低密度水泥浆固井质量评价相对声幅的方法,并给出了具体操作步骤,操作简单、方便,与水泥浆的对应性强。
3)建立了基于抗压强度的超低密度水泥浆固井质量评价相对声幅校核图版,明确了相对声幅与抗压强度和密度的关系,现场应用方便,可根据测井时间和井内环境精确计算出超低密度浆固井质量评价相对声幅,提高固井质量评价的准确性和时效性。
-
表 1 主要影响因素及取值范围
Table 1 Main influencing factors and range of values
影响因素 取值范围 最大水平主应力σH/MPa 80~135 最小水平主应力σh/MPa 30~80 钻井液密度ρf/(kg∙L–1) 1.15~2.05 水泥环的弹性模量Ec/GPa 10~60 水泥环的泊松比μc 0.15~0.35 地层的弹性模量Es/GPa 1~30 地层的泊松比μs 0.10~0.30 套管偏心距δ/mm 1.5~25.7 表 2 SVM“实验样本”数据
Table 2 Data of the SVM “experimental samples”
序号 ρf/(kg∙L–1) Ec/GPa μc Es/GPa μs σH/MPa σh/MPa δ/mm σv/MPa 1 1.73 35.00 0.26 15.70 0.25 55.00 107.50 25.7 642.24 2 1.48 38.57 0.18 25.91 0.23 40.71 123.21 1.5 766.62 3 1.48 38.57 0.18 25.91 0.23 40.71 123.21 11.2 768.59 4 1.23 38.57 0.18 17.74 0.31 37.14 80.00 1.5 458.83 5 1.48 20.71 0.32 25.91 0.23 51.43 127.14 20.8 754.53 6 1.48 38.57 0.18 25.91 0.23 40.71 123.21 6.3 767.72 7 1.48 20.71 0.32 25.91 0.23 51.43 127.14 11.2 754.29 8 2.05 42.14 0.35 23.87 0.16 65.71 111.43 1.5 487.51 9 1.73 35.00 0.26 9.57 0.40 51.43 127.14 25.7 1 008.85 10 1.81 27.86 0.17 7.53 0.34 44.29 103.57 1.5 835.23 … … … … … … … … … … 91 1.89 24.29 0.24 21.83 0.10 33.57 99.64 16.0 550.76 92 1.15 56.43 0.29 11.61 0.12 76.43 115.36 25.7 957.12 93 1.73 35.00 0.26 9.57 0.40 51.43 127.14 6.3 1 006.05 94 1.48 38.57 0.18 25.91 0.23 40.71 123.21 16.0 769.33 95 1.23 17.14 0.15 30.00 0.36 65.71 111.43 6.3 468.30 96 1.73 10.00 0.30 21.83 0.10 55.00 107.50 25.7 586.98 97 1.48 60.00 0.21 7.53 0.34 62.14 131.07 16.0 1 192.18 98 1.48 60.00 0.21 7.53 0.34 62.14 131.07 20.8 1 195.77 99 1.40 38.57 0.18 13.66 0.19 37.14 80.00 20.8 531.50 100 1.97 24.29 0.24 5.49 0.27 76.43 115.36 25.7 862.73 表 3 测试样本的预测结果
Table 3 Predictive effect of test samples
样本序号 模型参数 最大von Mises应力/MPa 绝对误差/MPa 相对误差,% 平均相对误差,% 样本值 预测值 96 σ=2.01
ε=0.01
C=3.00586.98 603.21 16.23 2.76 1.32 97 1 192.18 1 200.54 8.36 0.70 98 1 195.77 1 207.74 11.97 1.00 99 531.50 530.85 –0.65 –0.12 100 862.73 845.36 –17.37 –2.01 -
[1] American Petroleum Institute. API BULLETIN 5C3: bulletin on formulas and calculations of casing, tubing, drill pipe and line pipe properties[S]. 1994-10-01.
[2] HAN J Z, SHI T H. Nonuniform loading affects casing collapse resistance[J]. Oil & Gas Journal, 2001, 99(25): 45–48.
[3] 李军, 陈勉, 柳贡慧,等. 套管、水泥环及井壁围岩组合体的弹塑性分析[J]. 石油学报, 2005, 26(6): 99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023 LI Jun, CHEN Mian, LIU Gonghui, et al. Elastic-plastic analysis of casing-concrete sheath-rock combination[J]. Acta Petrolei Sinica, 2005, 26(6): 99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023
[4] 殷有泉,李平恩. 非均匀载荷下套管强度的计算[J]. 石油学报, 2007, 28(6): 138–141. doi: 10.3321/j.issn:0253-2697.2007.06.029 YIN Youquan, LI Ping’en. Computation of casing strength under non-uniform load[J]. Acta Petrolei Sinica, 2007, 28(6): 138–141. doi: 10.3321/j.issn:0253-2697.2007.06.029
[5] 李国庆. 套管水泥环组合应力计算边界条件分析[J]. 石油钻探技术, 2012, 40(2): 20–24. doi: 10.3969/j.issn.1001-0890.2012.02.004 LI Guoqing. Analysis of boundary condition of stress calculation on casing/cement-sheath[J]. Petroleum Drilling Techniques, 2012, 40(2): 20–24. doi: 10.3969/j.issn.1001-0890.2012.02.004
[6] CHEN Zhanfeng, ZHU Weiping, DI Qinfeng. Elasticity solution for the casing under linear crustal stress[J]. Engineering Failure Analysis, 2018, 84: 185–195. doi: 10.1016/j.engfailanal.2017.11.007
[7] 李子丰,张永贵,阳鑫军. 蠕变地层与油井套管相互作用力学模型[J]. 石油学报, 2009, 30(1): 129–131. doi: 10.3321/j.issn:0253-2697.2009.01.026 LI Zifeng, ZHANG Yonggui, YANG Xinjun. Mechanics model for interaction between creep formation and oil well casing[J]. Acta Petrolei Sinica, 2009, 30(1): 129–131. doi: 10.3321/j.issn:0253-2697.2009.01.026
[8] 徐守余,李茂华,牛卫东. 水泥环性质对套管抗挤强度影响的有限元分析[J]. 石油钻探技术, 2007, 35(3): 5–8. doi: 10.3969/j.issn.1001-0890.2007.03.002 XU Shouyu, LI Maohua, NIU Weidong. Finite element analysis of effect of cement sheath property on casing collapsing strength[J]. Petroleum Drilling Techniques, 2007, 35(3): 5–8. doi: 10.3969/j.issn.1001-0890.2007.03.002
[9] 李子丰,杨海军,陈飞. 蠕变性地层中套管有效外挤压力的计算方法探讨[J]. 石油钻探技术, 2014, 42(3): 13–15. LI Zifeng, YANG Haijun, CHEN Fei. The calculation of the effective external pressure on casing in creep formation[J]. Petroleum Drilling Techniques, 2014, 42(3): 13–15.
[10] RODRIGUEZ W J, FLECKENSTEIN W W, EUSTES A W. Simulation of collapse loads on cemented casing using finite element analysis[R]. SPE 84566, 2003.
[11] PATTILLO P D, LAST N C, ASBILL W T. Effect of nonuniform loading on conventional casing collapse resistance[J]. SPE Drilling & Completion, 2004, 19(3): 156–163.
[12] NABIPOUR A, JOODI B, SARMADIVALEH M. Finite element simulation of downhole stresses in deep gas wells cements[R]. SPE 132156, 2010.
[13] 窦益华. 粘弹性围岩中套管与井眼不同心时套管围压分析[J]. 石油钻采工艺, 1989, 11(4): 1–6. DOU Yihua. Analysis of casing confining pressure when casing and borehole are not concentric in viscoelastic surrounding rock[J]. Oil Driling & Production Technology, 1989, 11(4): 1–6.
[14] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297.
[15] CHEN Wei, DI Qinfeng, YE Feng, et al. Flowing bottomhole pressure prediction for gas wells based on support vector machine and random samples selection[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18333–18342. doi: 10.1016/j.ijhydene.2017.04.134
[16] 朱国强,刘士荣,俞金寿. 支持向量机及其在函数逼近中的应用[J]. 华东理工大学学报, 2002, 28(5): 555–559, 568. doi: 10.3969/j.issn.1006-3080.2002.05.023 ZHU Guoqiang, LIU Shirong, YU Jinshou. Support vector machine and its applications to function approximation[J]. Journal of East China University of Science and Technology, 2002, 28(5): 555–559, 568. doi: 10.3969/j.issn.1006-3080.2002.05.023
[17] 白鹏, 张喜斌, 张斌, 等.支持向量机理论及其工程应用实例[M].西安: 西安电子科技大学出版社, 2008: 53-56. BAI Peng, ZHANG Xibin, ZHANG Bin, et al. Support vector machine and its application in mixed gas infrared spectrum analysis[M]. Xi’an: Xidian University Press, 2008: 5-56.
[18] 成鹏,汪西莉. SVR参数对非线性函数拟合的影响[J]. 计算机工程, 2011, 37(3): 189–191, 194. doi: 10.3969/j.issn.1000-3428.2011.03.067 CHENG Peng, WANG Xili. Influence of SVR parameter on non-linear function approximation[J]. Computer Engineering, 2011, 37(3): 189–191, 194. doi: 10.3969/j.issn.1000-3428.2011.03.067
[19] 王国华,陈正茂,熊继有, 等. 非均匀载荷下套管偏心对套管强度影响研究[J]. 石油天然气学报, 2012, 34(10): 105–107. doi: 10.3969/j.issn.1000-9752.2012.10.025 WANG Guohua, CHEN Zhengmao, XIONG Jiyou, et al. The effect of casing eccentricity on the casing strength under non-uniformity load[J]. Journal of Oil and Gas Technology, 2012, 34(10): 105–107. doi: 10.3969/j.issn.1000-9752.2012.10.025
[20] 陈占锋,朱卫平,狄勤丰,等. 非均匀地应力下套管偏心对抗挤强度的影响[J]. 上海大学学报(自然科学版), 2012, 18(1): 83–86. CHEN Zhanfeng, ZHU Weiping, DI Qinfeng, et al. Effects of eccentricity of casing on collapse resistance in non-uniform in-situ stresses[J]. Journal of Shanghai University(Natural Science Edition), 2012, 18(1): 83–86.
[21] 赵德安, 陈志敏, 蔡小林, 等. 中国地应力场分布规律统计分析[J]. 岩石力学与工程学报, 2007, 26(6): 1265–1271. doi: 10.3321/j.issn:1000-6915.2007.06.024 ZHAO Dean, CHEN Zhiming, CAI Xiaolin, et al. Analysis of distribution rule of geostress in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1265–1271. doi: 10.3321/j.issn:1000-6915.2007.06.024
[22] 程文瀼.混凝土结构: 上册: 混凝土结构设计原理[M].北京: 中国建筑工业出版社, 2005: 15-17. CHENG Wenxiang. Concrete structure: part A: design principle of concrete structure[M]. Beijing: China Architecture & Building Press, 2005: 15-17.
-
期刊类型引用(14)
1. 朱雷,潘金林,陈雪莲,马锐,田隆梅,周浩栋. 套管和水泥环尺寸对CBL/VDL测井套管波的影响研究. 石油钻探技术. 2025(01): 136-143 . 本站查看
2. 陈瑶,谭慧静,王胜,郑秀华,朱文茜,叶有. 地热井固井中硅酸盐水泥体系的技术现状及发展趋势. 钻探工程. 2025(03): 1-11 . 百度学术
3. 肖红,钱祎鸣. 基于改进DenseNet的固井质量评价新方法. 计算机技术与发展. 2024(01): 193-199 . 百度学术
4. 郑少军,谷怀蒙,刘天乐,陈宇,蒋国盛,王韧,代天,秦榜伟,徐浩,万涛. 基于紧密堆积理论的深水低密度三元固相水泥浆体系. 天然气工业. 2024(02): 122-131 . 百度学术
5. 张常瑞,张景富,朱胡佳,谢帅,谢雨辰,王建成. 超低密度水泥浆固井质量改进方法研究. 中国矿业. 2024(05): 181-186 . 百度学术
6. 肖红,钱祎鸣. 基于CNN-SVM和集成学习的固井质量评价方法. 吉林大学学报(理学版). 2024(04): 960-970 . 百度学术
7. 尚磊. 超低密度水泥固井质量评价方法研究. 石化技术. 2024(08): 215-217 . 百度学术
8. 朱雷,陈雪莲,张鑫磊,袁仕俊,王华伟,买振. 基于IBC和CBL/VDL测井的微间隙识别方法. 石油钻探技术. 2024(04): 135-142 . 本站查看
9. 邹卓峰,张宝权,李辉,王建华,王海涛,管震. 基于图像识别技术的固井质量评价方法研究. 钻探工程. 2024(S1): 104-111 . 百度学术
10. 张强. 文23储气库储层段钻井液及储层保护技术. 断块油气田. 2023(03): 517-522 . 百度学术
11. 任强,刘宁泽,罗文丽,高飞,刘景丽,刘岩,杨豫杭,程小伟. 泡沫减重水泥浆体系及其微观孔隙分布. 钻井液与完井液. 2023(03): 376-383 . 百度学术
12. 丁士东,陆沛青,郭印同,李早元,卢运虎,周仕明. 复杂环境下水泥环全生命周期密封完整性研究进展与展望. 石油钻探技术. 2023(04): 104-113 . 本站查看
13. 孙晓峰,陶亮,朱志勇,于福锐,孙铭浩,赵元喆,曲晶瑀. 页岩储层水平扩径井段固井顶替效率数值模拟研究. 特种油气藏. 2023(04): 139-145 . 百度学术
14. 黎红胜,温慧芸,文良凡,郑振国,陈玉平. 哥伦比亚VS-6、VS-8井固井问题分析及其对策. 石油工业技术监督. 2022(10): 63-68 . 百度学术
其他类型引用(3)