Key Technologies for Drilling Horizontal Wells in Glutenite Tight Oil Reservoirs in the Mahu Oilfield of Xinjiang
-
摘要: 准噶尔盆地玛湖致密砂砾岩油田是新疆油田提产的重点区域,为了满足该油田勘探开发的需求,提高钻井速度,缩短钻井周期,通过优化井身结构,优化井眼轨道设计,优选钻井液和个性化PDC钻头,采用韧性水泥浆、漂浮下套管固井技术、“螺杆钻具+PDC钻头”复合钻井技术及旋转导向钻井技术等一系列钻井提速技术,形成了玛湖油田砂砾岩致密油水平井钻井关键技术。2018年,该油田玛131 区块完钻8口砂砾岩致密油井水平井,平均完钻井深 4 921.75 m,平均水平段长度 1 576.00 m,平均钻井周期 46.50 d,平均机械钻速 11.19 m/h,其中MaHW1247井完钻井深达5 040.00 m,钻井周期只有42 d,创造了玛湖油田完钻井深5 000.00 m以上水平井钻井周期最短纪录。现场应用表明,玛湖油田砂砾岩致密油水平井钻井关键技术能够提高机械钻速,缩短钻井周期,为玛湖油田的高效勘探开发提供技术支持。Abstract: The Mahu tight glutenite oilfield in the Junggar Basin is the key area for increasing production in Xinjiang Oilfield. In order to meet the needs of exploration and development in this oilfield, improve the drilling speed and to shorten the drilling cycle, the key drilling technologies suitable for the efficient development of horizontal wells in the Mahu tight glutenite oilfield was developed by several means. The technologies included optimizing the designs of the casing program and wellbore trajectory, selecting the drilling fluid, customizing the PDC bit properly, adopting a series of drilling speed-up technologies, including the ductile cement slurry, floating casing and cementing, PDM+ PDC bit compound drilling and rotary steering drilling, etc. In 2018, this oilfield has completed eight horizontal wells in tight sand conglomerate in Ma131 Block, with the average well depth of 4 921.75 m, average horizontal section length of 1 576.00 m, average drilling cycle of 46.5 d, and average ROP of 11.19 m/h. Among them, the Well MaHW1247 has the total depth of 5040 m and drilling cycle of only 42 days, it has set the fastest drilling record in the horizontal wells with a total depth of more than 5 000.00 m in the Mahu Oilfield. The field applications demonstrated that the key technologies could effectively improve the ROP and shorten the drilling cycle, and provide technical support for the exploration and development of Mahu Oilfield.
-
Key words:
- glutenite /
- horizontal well /
- casing program /
- well trajectory /
- PDC bit /
- rotary drilling /
- penetration rate /
- Mahu Oilfield
-
表 1 砂砾岩地层的岩石力学参数
Table 1. Rock mechanics parameters of glutenite strata
地层 抗压强度/MPa 内摩擦角/(°) 可钻性级值 八道湾组 60~90 38~41 6.0~7.5 克拉玛依组 40~60 35~38 5.0~7.0 百口泉组 50~70 35~40 6.0~8.0 表 2 PDC钻头的特征
Table 2. Characteristics of PDC bit
井段 地层 刀翼数量 切削齿直径/mm 布齿密度 钻头特性 直井段 八道湾组 5~6 16.0~19.0 中高 钢体,抗冲击 造斜段 克拉玛依组 4~5 13.0~16.0 中低 钢体,强攻击 水平段 百口泉组 6~7 13.0~16.0 高 胎体,抗冲击,耐研磨 -
[1] 谭开俊, 张帆, 吴晓智, 等. 准噶尔盆地西北缘盆山耦合与油气成藏[J]. 天然气工业, 2008, 28(5): 10–13. doi: 10.3787/j.issn.1000-0976.2008.05.003TAN Kaijun, ZHANG Fan, WU Xiaozhi, et al. Basin-mountain coupling and hydrocarbon accumulation in northwestern margin of Junggar Basin[J]. Natural Gas Industry, 2008, 28(5): 10–13. doi: 10.3787/j.issn.1000-0976.2008.05.003 [2] 李瑞营, 王峰, 陈绍云, 等. 大庆深层钻井提速技术[J]. 石油钻探技术, 2015, 43(1): 38–43.LI Ruiying, WANG Feng, CHEN Shaoyun, et al. ROP improvement in deep formations in the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 38–43. [3] 朱忠喜, 刘颖彪, 路宗羽, 等. 准噶尔盆地南缘山前构造带钻井提速研究[J]. 石油钻探技术, 2013, 41(2): 34–38. doi: 10.3969/j.issn.1001-0890.2013.02.007ZHU Zhongxi, LIU Yingbiao, LU Zongyu, et al. Increasing the penetration rate for piedmont belt of Junggar Basin[J]. Petroleum Drilling Techniques, 2013, 41(2): 34–38. doi: 10.3969/j.issn.1001-0890.2013.02.007 [4] 王海涛, 张伟, 王国斌, 等. 准噶尔盆地环玛湖凹陷钻井提速技术[J]. 石油钻采工艺, 2014, 36(4): 30–33.WANG Haitao, ZHANG Wei, WANG Guobin, et al. ROP enhancing technology for circum-mahu lake depression in Junggar Basin[J]. Oil Drilling & Production Technology, 2014, 36(4): 30–33. [5] 章敬, 罗兆, 徐明强, 等. 新疆油田致密油地质工程一体化实践与思考[J]. 中国石油勘探, 2017, 22(1): 12–20. doi: 10.3969/j.issn.1672-7703.2017.01.003ZHANG Jing, LUO Zhao, XU Mingqiang, et al. Application of geology-engineering integration in development of tight oil in Xinjiang Oilfield[J]. China Petroleum Exploration, 2017, 22(1): 12–20. doi: 10.3969/j.issn.1672-7703.2017.01.003 [6] 刘力, 卓鲁斌, 邹灵战, 等. 玛湖低渗油藏高效开发钻完井技术[J]. 新疆石油科技, 2017, 27(2): 1–6.LIU Li, ZHUO Lubin, ZOU Lingzhan, et al. Efficient drilling and completion technology for Mahu low permeability reservoir[J]. Xinjiang Petroleum Science & Technology, 2017, 27(2): 1–6. [7] 李洪, 邹灵战, 汪海阁, 等. 玛湖致密砂砾岩2000 m水平段水平井优快钻完井技术[J]. 石油钻采工艺, 2017, 39(1): 47–52.LI Hong, ZOU Lingzhan, WANG Haige, et al. High-quality fast drilling and completion technologies for horizontal wells with horizontal section of 2000 m long in Mahu tight glutenites[J]. Oil Drilling & Production Technology, 2017, 39(1): 47–52. [8] 邹灵战, 邹灵雄, 蒋雪梅, 等. 玛湖砂砾岩致密油水平井钻井技术[J]. 新疆石油天然气, 2018, 14(3): 19–24. doi: 10.3969/j.issn.1673-2677.2018.03.005ZOU Lingzhan, ZOU Lingxiong, JIANG Xuemei, et al. Drilling technology for horizontal well of Mahu glutenites tight oil[J]. Xinjiang Oil & Gas, 2018, 14(3): 19–24. doi: 10.3969/j.issn.1673-2677.2018.03.005 [9] 李宁, 周小君, 周波, 等. 塔里木油田HLHT区块超深井钻井提速配套技术[J]. 石油钻探技术, 2017, 45(2): 10–14.LI Ning, ZHOU Xiaojun, ZHOU Bo, et al. Technologies for fast drilling ultra-deep wells in the HLHT Block,Tarim Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(2): 10–14. [10] 丁红, 王建毅, 李俊胜, 等. 青西油田深井定向钻井技术[J]. 石油钻探技术, 2015, 43(6): 35–39.DING Hong, WANG Jianyi, LI Junsheng, et al. Technology of drilling deep directional wells in Qingxi Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(6): 35–39. [11] 罗恒荣. 临盘油田PDC钻头防斜打快钻具组合优化及应用[J]. 石油钻探技术, 2016, 44(1): 12–17.LUO Hengrong. Optimization and application of anti-deflect and fast drilling BHA with a PDC bit in the Linpan Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(1): 12–17. [12] 李广国, 索忠伟, 王金荣, 等. 塔河油田液动射流冲击器+PDC钻头提速技术[J]. 石油钻探技术, 2013, 41(5): 71–75. doi: 10.3969/j.issn.1001-0890.2013.05.014LI Guangguo, SUO Zhongwei, WANG Jinrong, et al. Improve ROP with hydraulic percussion hammer and PDC bit in Tahe Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(5): 71–75. doi: 10.3969/j.issn.1001-0890.2013.05.014 [13] 王斌, 李洪乾, 李强. 缅甸D区块二开井段防斜钻具组合优选[J]. 石油钻探技术, 2010, 38(4): 67–69.WANG Bin, LI Hongqian, LI Qiang. Optimum selection of anti-deflection drilling assembly in the second opening section of Block D,Myanmar[J]. Petroleum Drilling Techniques, 2010, 38(4): 67–69. [14] 侯庆勇, 彭烨, 左维国, 等. 适用于长庆油田陇东地区的PDC钻头研发与应用[J]. 石油钻探技术, 2006, 34(3): 68–70. doi: 10.3969/j.issn.1001-0890.2006.03.021HOU Qingyong, PENG Ye, ZUO Weiguo, et al. Bit research and development and application in Longdong Area of Changqing Oilfield[J]. Petroleum Drilling Techniques, 2006, 34(3): 68–70. doi: 10.3969/j.issn.1001-0890.2006.03.021 [15] 董明键, 肖新磊, 边培明. 复合钻井技术在元坝地区陆相地层中的应用[J]. 石油钻探技术, 2010, 38(4): 38–40.DONG Mingjian, XIAO Xinlei, BIAN Peiming. Application of compound drilling technology in terrestrial formation in Yuanba Area[J]. Petroleum Drilling Techniques, 2010, 38(4): 38–40. [16] 罗玉财, 李晶莹, 李振昊, 等. 深潜山阳探1井钻井提速技术[J]. 石油钻探技术, 2015, 43(6): 130–134.LUO Yucai, LI Jingying, LI Zhenhao, et al. ROP improvement techniques applied in Well Yangtan 1 when drilling into a deep buried hill[J]. Petroleum Drilling Techniques, 2015, 43(6): 130–134. [17] 张东清. 龙凤山气田北209井钻井提速技术[J]. 石油钻探技术, 2016, 44(4): 22–26.ZHANG Dongqing. Enhancement of ROP in Well Bei-209 of the Longfengshan Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(4): 22–26. [18] 刘志良, 支东明, 黄鸿, 等. 新疆油田中拐凸起探井钻井提速增效技术[J]. 石油钻探技术, 2015, 43(2): 14–18.LIU Zhiliang, ZHI Dongming, HUANG Hong, et al. Technique for improving ROP and benefit in Zhongguai Uplift Area of Xinjiang Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(2): 14–18. [19] 邱正松,暴丹,李佳,等. 井壁强化机理与致密承压封堵钻井液技术新进展[J]. 钻井液与完井液, 2018, 35(4): 1–6.QIU Zhengsong, BAO Dan, LI Jia, et al. Mechanisms of wellbore strengthening and new advances in lost circulation control with dense pressure bearing zone[J]. Drilling Fluid & Completion Fluid, 2018, 35(4): 1–6. [20] 丁志伟,杨俊龙,汪瑶,等. 低温高强韧性水泥浆在致密油水平井的应用[J]. 钻井液与完井液, 2017, 34(2): 106–110, 116.DING Zhiwei, YANG Junlong, WANG Yao, et al. DING Zhiwei, YANG Junlong, WANG Yao, et al. Cementing tight reservoir with low temperature high strength tough cement slurry[J]. Drilling Fluid & Completion Fluid, 2017, 34(2): 106–110, 116. -