随钻高分辨率电阻率成像仪器探测特性研究

倪卫宁 康正明 路保平 柯式镇 李新 李铭宇

倪卫宁, 康正明, 路保平, 柯式镇, 李新, 李铭宇. 随钻高分辨率电阻率成像仪器探测特性研究[J]. 石油钻探技术, 2019, 47(2): 114-119. doi: 10.11911/syztjs.2019005
引用本文: 倪卫宁, 康正明, 路保平, 柯式镇, 李新, 李铭宇. 随钻高分辨率电阻率成像仪器探测特性研究[J]. 石油钻探技术, 2019, 47(2): 114-119. doi: 10.11911/syztjs.2019005
NI Weining, KANG Zhengming, LU Baoping, KE Shizhen, LI Xin, LI Mingyu. The Detection Characteristics of a High Resolution Resistivity Imaging Instrument while Drilling[J]. Petroleum Drilling Techniques, 2019, 47(2): 114-119. doi: 10.11911/syztjs.2019005
Citation: NI Weining, KANG Zhengming, LU Baoping, KE Shizhen, LI Xin, LI Mingyu. The Detection Characteristics of a High Resolution Resistivity Imaging Instrument while Drilling[J]. Petroleum Drilling Techniques, 2019, 47(2): 114-119. doi: 10.11911/syztjs.2019005

随钻高分辨率电阻率成像仪器探测特性研究

doi: 10.11911/syztjs.2019005
基金项目: 

国家科技重大专项“低渗透储层高精度随钻成像技术研究”(编号:2016ZX05021-002)资助

详细信息
    作者简介:

    倪卫宁(1979—),男,安徽黄山人,2000年毕业于石油大学(华东)应用电子技术专业,2003年获石油大学(华东)控制理论与控制工程专业硕士学位,2006年获中国科学院半导体研究所微电子学与固体电子学专业博士学位,副研究员,主要从事井下智能、随钻测控技术研究。E-mail:niwn.sripe@sinopec.com

    通讯作者:

    康正明,kzm991430414@sina.cn

  • 中图分类号: P631.3+3

The Detection Characteristics of a High Resolution Resistivity Imaging Instrument while Drilling

  • 摘要: 针对现有随钻电阻率成像仪器周向钮扣电极分布少的问题,设计了一种新的钮扣电极分布方案。该仪器周向排布8个圆形钮扣电极,纵向分为2排,且每排钮扣电极直径不同,既能在复合钻进时进行全井眼覆盖扫描成像,又能在滑动钻进时获得8个扇区固定方位的井眼图像;建立了复杂的水平层状地层、含周向异常体地层和水平井地层等3种地层模型,利用有限元方法分析了仪器在不同地层模型中的测井响应特征。分析结果表明:该仪器具有较好的纵向分辨率,钮扣电极的纵向分辨率与其直径相当,可以准确识别方位性高阻地层;水平井地层界面对仪器不同方位测量的影响不同,侧向测量模式在地层界面处的响应与电缆侧向测井类似。该仪器在复杂地层中具有较好的适用性,研究结果对随钻电阻率成像仪器的研发和数据解释具有指导作用。
  • 图  1  发射螺绕环等效为理想化磁环示意

    Figure  1.  Schematic of a launching spiral ring that is equivalent to the idealized magnetic ring

    图  2  仪器结构示意

    Figure  2.  Structure of the instrument

    图  3  源距对测量电流的影响

    Figure  3.  Effect of source distance on measured current

    图  4  钮扣电极直径对测量电流的影响

    Figure  4.  Effect of button electrode diameter on measured current

    图  5  测井仪器在水平层状地层的测井响应

    Figure  5.  Logging response of the logging instrument in horizontally layered strata

    图  6  含方向性异常体的地层模型

    Figure  6.  Stratigraphic model with directional anomalous bodies

    图  7  钮扣电极视电阻率与异常体张开角度的关系曲线

    Figure  7.  The relationship curve between the apparent resistivity of the button electrode and the anomalous body opening angle

    图  8  深侧向与钻头视电阻率与异常体张开角度的关系曲线

    Figure  8.  The relationship curve between the apparent resistivity of deep laterolog/bit and the anomalous body opening angle

    图  9  水平井数值模拟模型示意

    Figure  9.  The model of horizontal well numerical simulation

    图  10  钮扣电极测量的视电阻率与仪器距地层界面距离的关系曲线

    Figure  10.  The relationship curve between the apparent resistivity measured by the buttonelectrode and the distance of the instrument to strata interface

    图  11  侧向、钻头测量的视电阻率与仪器距地层界面距离的关系曲线

    Figure  11.  The relationship curve between the apparent resistivity measured by the laterolog/bit and the distance of the instrument to strata interface

    表  1  水平层状地层模型参数

    Table  1.   The model parameters of horizontally layered strata

    编号纵向坐标/m地层厚度/m地层电阻率/(Ω·m)
    1–100.000100.00010
    200.005100
    30.0050.00510
    40.0100.010100
    50.0200.01010
    60.0300.020100
    70.0500.02010
    80.0700.040100
    90.1100.04010
    100.1500.060100
    110.2100.06010
    120.2700.080100
    130.3500.08010
    140.43099.57010
    下载: 导出CSV
  • [1] 张辛耘, 王敬农, 郭彦军. 随钻测井技术进展和发展趋势[J]. 测井技术, 2006, 30(1): 10–15. doi:  10.3969/j.issn.1004-1338.2006.01.002

    ZHANG Xinyun, WANG Jingnong, GUO Yanjun. Advances and trends in logging while drilling technology[J]. Well Logging Technology, 2006, 30(1): 10–15. doi:  10.3969/j.issn.1004-1338.2006.01.002
    [2] 杨震, 肖红兵, 李翠. 随钻方位电磁波仪器测量精度对电阻率及界面预测影响分析[J]. 石油钻探技术, 2017, 45(4): 115–120.

    YANG Zhen, XIAO Hongbing, LI Cui. Impacts of accuracy of azimuthal electromagnetic logging-while-drilling on resistivity and interface prediction[J]. Petroleum Drilling Techniques, 2017, 45(4): 115–120.
    [3] 杨世夺, 雷霄, 蔡军, 等. 随钻电阻率成像测井在北部湾碳酸盐岩储层中的综合应用[J]. 测井技术, 2010, 34(2): 177–182. doi:  10.3969/j.issn.1004-1338.2010.02.017

    YANG Shiduo, LEI Xiao, CAI Jun, et al. Integrated solution of LWD resistivity image logging in carbonate reservoir in Beibu Gulf, China[J]. Well Logging Technology, 2010, 34(2): 177–182. doi:  10.3969/j.issn.1004-1338.2010.02.017
    [4] 李安宗, 李启明, 朱军, 等. 方位侧向电阻率成像随钻测井仪探测特性数值模拟分析[J]. 测井技术, 2014, 38(4): 407–410. doi:  10.3969/j.issn.1004-1338.2014.04.006

    LI Anzong, LI Qiming, ZHU Jun, et al. Numerical analysis of logging response for LWD azimuthal laterolog resistivity imaging tool[J]. Well Logging Technology, 2014, 38(4): 407–410. doi:  10.3969/j.issn.1004-1338.2014.04.006
    [5] 林楠. 随钻电阻率成像技术在页岩气压裂评价中的应用[J]. 录井工程, 2015, 26(2): 16–20. doi:  10.3969/j.issn.1672-9803.2015.02.004

    LIN Nan. LWD resistivity imaging technology in the evaluation of shale gas fracturing[J]. Mud Logging Engineering, 2015, 26(2): 16–20. doi:  10.3969/j.issn.1672-9803.2015.02.004
    [6] 王邦伟, 张树东, 吉人, 等. 高分辨率随钻电阻率成像测井在四川盆地碳酸盐岩储层的应用[J]. 测井技术, 2017, 41(3): 358–363.

    WANG Bangwei, ZHANG Shudong, JI Ren, et al. Application of microscope high resolution LWD resistivity image logging in carbonate reservoirs in Sichuan Basin[J]. Well Logging Technology, 2017, 41(3): 358–363.
    [7] ALLOUCHE M, CHOW S, DUBOURG I, et al. High-resolution images and formation evaluation in slim holes from a new logging-while-drilling azimuthal laterolog device[R]. SPE 131513, 2010.
    [8] ORTENZI L, DUBOURG I, van OS R, et al. New azimuthal resistivity and high-resolution imager facilitates formation evaluation and well placement of horizontal slim boreholes[J]. Petrophysics, 2011, 53(3): 197–207.
    [9] PRAMMER M G, MORYS M, KNIZHNIK S, et al. Field testing of an advanced LWD imaging resistivity tool[R]. SPWLA-2007-AA, 2007.
    [10] PRAMMER M G, MORYS M, KNIZHNIK S, et al. A high-resolution LWD resistivity imaging tool-field testing in vertical and highly deviated boreholes[J]. Petrophysics, 2009, 50(1): 49–66.
    [11] RITTER R N, CHEMALI R, LOFTS J, et al. High resolution visualization of near wellbore geology using while-drilling electrical images[R]. SPWLA-2004-PP, 2004.
    [12] AKIMOV O, BAULE A, FULDA C, et al. Real-time imaging while drilling: US7272504[P]. 2007–09–18.
    [13] FULDA C, HARTMANN A, GOREK M. High resolution electrical imaging while drilling[R]. SPWLA-2010-46830, 2010.
    [14] ARPS J. J. Inductive resistivity guard logging apparatus including toroidal coils mounted on a conductive stem: US3305771[P]. 1967–02–21.
    [15] GIANZERO S, CHEMALI R, LIN Y, et al. A new resistivity tool for measurement-while-drilling[R]. SPWLA-1985-A, 1985.
    [16] 康正明, 柯式镇, 李新, 等. 钻头电阻率测井仪器探测特性研究[J]. 石油科学通报, 2017, 2(4): 457–465.

    KANG Zhengming, KE Shizhen, LI Xin, et al. The detection characteristics study of the at-bit resistivity logging tool[J]. Petroleum Science Bulletin, 2017, 2(4): 457–465.
    [17] 李铭宇, 柯式镇, 康正明, 等. 螺绕环激励式随钻侧向测井仪测量强度影响因素及响应特性[J]. 石油钻探技术, 2018, 46(1): 128–134.

    LI Mingyu, KE Shizhen, KANG Zhengming, et al. Influence factors of measured signal intensity and the response characteristics of the toroidal coil excitation LWD laterolog instrument[J]. Petroleum Drilling Techniques, 2018, 46(1): 128–134.
    [18] WANG H M, SHEN L C, ZHANG G J. Dual laterolog response in 3-D environments[R]. SPWLA-1998-X, 1998.
  • [1] 胡松, 王敏, 田飞, 赵磊.  基于水平井电阻率测井的井间夹层反演方法及应用, 石油钻探技术. doi: 10.11911/syztjs.2021031
    [2] 药晓江, 卢华涛, 尚捷, 王清华, 李洋.  随钻测井仪流道转换器优化设计与数值分析, 石油钻探技术. doi: 10.11911/syztjs.2021069
    [3] 欧阳伟平, 张冕, 孙虎, 张云逸, 池晓明.  页岩油水平井压裂渗吸驱油数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.2021083
    [4] 谢关宝, 李永杰, 吴海燕, 黎有炎.  近井眼洞穴型地层双侧向测井敏感因素分析, 石油钻探技术. doi: 10.11911/syztjs.2019134
    [5] 黄明泉, 杨震.  随钻超深电磁波仪器探测深度及响应特征模拟, 石油钻探技术. doi: 10.11911/syztjs.2019132
    [6] 康正明, 柯式镇, 李新, 倪卫宁, 李飞.  随钻电阻率成像测井仪定量评价地层界面探究, 石油钻探技术. doi: 10.11911/syztjs.2020087
    [7] 于法浩, 蒋召平, 白健华, 刘义刚, 孟祥海.  渤海油田稠油水平井防砂筛管耐温能力的确定, 石油钻探技术. doi: 10.11911/syztjs.2018010
    [8] 李铭宇, 柯式镇, 康正明, 李新, 倪卫宁.  螺绕环激励式随钻侧向测井仪测量强度影响因素及响应特性, 石油钻探技术. doi: 10.11911/syztjs.2018025
    [9] 夏宏泉, 胡慧, 杨林, 赵静.  基于声波变密度测井信息识别水平井压裂裂缝的方法, 石油钻探技术. doi: 10.11911/syztjs.201705020
    [10] 鲁法伟, 王建平, 陈金龙.  低渗气层原状电阻率的求取方法, 石油钻探技术. doi: 10.11911/syztjs.201605020
    [11] 罗恒荣, 张晋凯, 周仕明, 陶谦, 方春飞.  偏心度和密度差耦合条件下水平井顶替界面特征研究, 石油钻探技术. doi: 10.11911/syztjs.201604012
    [12] 陈会娟, 李明忠, 王一平, 加热拉·努如拉, 张艳玉.  割缝筛管水平井注蒸汽热力参数分布规律数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.201503020
    [13] 李皋, 肖贵林, 李小林, 李诚.  气体钻水平井岩屑运移数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.201504012
    [14] 魏辽, 韩峰, 陈涛, 郭朝辉, 朱玉杰.  套管固井滑套冲蚀磨损模拟分析与试验研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.03.020
    [15] 霍洪俊, 王瑞和, 倪红坚, 赵焕省, 宋维强.  超临界二氧化碳在水平井钻井中的携岩规律研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.02.003
    [16] 卞晓冰, 蒋廷学, 贾长贵, 李双明, 王雷.  考虑页岩裂缝长期导流能力的压裂水平井产量预测, 石油钻探技术. doi: 10.11911/syztjs.201405006
    [17] 宋先知, 李根生, 王梦抒, 易灿, 苏新亮.  连续油管钻水平井岩屑运移规律数值模拟, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.02.006
    [18] 何伟国, 唐明, 吴柳根.  塔河油田深层侧钻水平井膨胀套管钻井完井技术, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.05.012
    [19] 蒋廷学, 卞晓冰, 王海涛, 刘致屿.  页岩气水平井分段压裂排采规律研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.05.004
    [20] 沈海超, 程远方, 胡晓庆.  天然气水合物藏降压开采近井储层稳定性数值模拟, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.02.015
  • 加载中
图(11) / 表ll (1)
计量
  • 文章访问数:  12881
  • HTML全文浏览量:  6183
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-28
  • 修回日期:  2018-11-29
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回