Study of a Simulation of Degree of Fracturing Production and Resulting Gas Flow in Shale Gas Reservoirs
-
摘要: 页岩储层孔喉细小、渗透率低,水力压裂后形成主裂缝及诱导裂缝网络加剧了页岩气流动的复杂性。为了准确表征页岩气拟稳态渗流特征,提出了离散裂缝耦合多重连续介质系统数学表征方法,并针对储层裂缝分布形态,利用商业数值模拟器建立了考虑吸附/解吸的页岩气藏离散裂缝耦合多重连续介质数值模拟模型。模型中采用局部网格加密的方法描述离散裂缝网络,基于建立的多重连续介质系统数学方法表征压裂后形成的密集分布微小裂缝体系。利用建立的模型,系统分析了储层横向/纵向动用程度以及裂缝导流能力、裂缝半长、裂缝排布方式等裂缝参数对页岩气泄气面积和气井产能的影响。研究发现,增大储层改造体积能够大幅度提高页岩气单井产量,但同时应当考虑主裂缝与次裂缝网络的配置关系;当储层改造体积相同时,最大限度提高裂缝与井筒之间的连通程度是提高页岩气产量的必要条件。研究认为,上述研究结果对页岩气压裂改造设计具有一定的理论指导意义。Abstract: Due to small pore throats and low permeability of shale reservoirs,primary natural fractures and induced fracture networks hydraulic fracturing can dramatically aggravate the complexity of shale gas flow.We needed to accurately characterize the pseudo-steady seepage characteristics of shale gas.To do so,we proposed a mathematical characterization method using discrete fractures coupled with a multiple continuous media system.Taking into consideration the distribution of reservoir fractures,the commercial numerical simulator was used to establish the discrete fractures and to couple them with multiple continuous media took into consideration adsorption/desorption for shale gas reservoirs.The mathematical model incorporated a local grid encryption method to describe the discrete fracture network.Based on the established multi-continuum system mathematical method,it was possible to model induced fractures within the natural fractures,including densely distributed micro-crack system that formed after fracturing.By using the established model,it was possible to systematically analyze the effects of fracture parameters,such as lateral/longitudinal mobilization of reservoirs,fracture conductivity,fracture half-length,and fracture arrangement on shale gas drainage area and gas well productivity.Studies revealed that increasing the reservoir stimulation volume could significantly increase shale gas production per well.Above all,the configuration relationship between the main fracture and the secondary fracture network should not be ignored.The model demonstrated that under the same reservoir stimulation volume,the connectivity between the fracture and wellbore was a necessary condition for increasing shale gas production,and it should be maximized.Studies suggested that the new modeling technique is effective and that it can be used as a guide when designing shale gas fracturing stimulation.
-
Keywords:
- shale gas /
- network fracturing /
- continuous medium model /
- production degree /
- numerical simulation
-
-
[1] KANG S M,FATHI E,AMBROSE R J,et al.Carbon dioxide storage capacity of organic-rich shales[J].SPE Journal,2011,16(4):842-855.
[2] YAN Bicheng,WANG Yuhe,KILLOUGH J E.Beyond dual-porosity modeling for the simulation of complex flow mechanisms in shale reservoirs[J].Computational Geosciences,2016,20(1):69-91.
[3] WASAKI A,AKKUTLU I Y.Permeability of organic-rich shale[J].SPE Journal,2015,20(6):1384-1396.
[4] 戴金星,吴伟,房忱琛,等.2000年以来中国大气田勘探开发特征[J].天然气工业,2015,35(1):1-9. DAI Jinxing,WU Wei,FANG Chenchen,et al.Exploration and development of large gas fields in China since 2000[J].Natural Gas Industry,2015,35(1):1-9. [5] 钱斌,张俊成,朱炬辉,等.四川盆地长宁地区页岩气水平井组"拉链式"压裂实践[J].天然气工业,2015,35(1):81-84. QIAN Bin,ZHANG Juncheng,ZHU Juhui,et al.Application of zipper fracturing of horizontal cluster wells in the Changning shale gas pilot zone,Sichuan Basin[J].Natural Gas Industry,2015,35(1):81-84. [6] LANGE T,SAUTER M,HEITFELD M,et al.Hydraulic fracturing in unconventional gas reservoirs:risks in the geological system part 1[J].Environmental Earth Sciences,2013,70(8):3839-3853.
[7] LOUCKS R G,REED R M,RUPPEL S C,et al.Morphology,Genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
[8] YUAN Bin,SU Yuliang,MOGHANLOO R G,et al.A new analytical multi-linear solution for gas flow toward fractured horizontal wells with different fracture intensity[J].Journal of Natural Gas Science and Engineering,2015,23:227-238.
[9] WANG Wendong,SHAHVALI M,SU Yuliang.A semi-analytical fractal model for production from tight oil reservoirs with hydraulically fractured horizontal wells[J].Fuel,2015,158:612-618.
[10] WANG Wendong,SU Yuliang,SHENG Guanglong,et al.A mathematical model considering complex fractures and fractal flow for pressure transient analysis of fractured horizontal wells in unconventional oil reservoirs[J].Journal of Natural Gas Science Engineering,2015,23:139-147.
[11] YUAN Bin,MOGHANLOO G R,SHARIFF E,et al.Integrated investigation of dynamic drainage volume (DDV) and inflow performance relationship (transient IPR) to optimize multi-stage fractured horizontal wells in shale oil[J].Journal of Energy Resource Technology,2016,138(5):052901-1-052901-9.
[12] 孙海,姚军,孙致学,等.页岩气数值模拟技术进展及展望[J].油气地质与采收率,2012,19(1):46-49. SUN Hai,YAO Jun,SUN Zhixue,et al.Recent development and prospect on numerical simulation of shale gas reservoirs[J].Petroleum Geology and Recovery Efficiency,2012,19(1):46-49. [13] 陈晓明,李建忠,郑民,等.干酪根溶解理论及其在页岩气评价中的应用探索[J].天然气地球科学,2012,23(1):14-18. CHEN Xiaoming,LI Jianzhong,ZHENG Min,et al.Kerogen solution the oryand its exploratory applicationin shale gas assessment[J].Natural Gas Geoscience,2012,23(1):14-18. [14] JAVADPOUR F,FISHER D,UNSWORTH M.Nanoscale gas flow in shale gas sediments[J].Journal of Canadian Petroleum Technology,2007,46(10):55-61.
[15] 赵金洲,李志强,胡永全,等.考虑页岩储层微观渗流的压裂产能数值模拟[J].天然气工业,2015,35(6):53-58. ZHAO Jinzhou,LI Zhiqiang,HU Yongquan,et al.Numerical simulation of productivity after fracturing with consideration to micro-seepage in shale reservoirs[J].Natural Gas Industry,2015,35(6):53-58. [16] FREEMAN C M,MORIDIS G J,BLASINGAME T A.A numerical study of microscale flow behavior in tight gas and shale gas reservoir systems[J].Transport in Porous Media,2011,90(1):253-268.
[17] 高树生,于兴河,刘华勋.滑脱效应对页岩气井产能影响的分析[J].天然气工业,2011, 31(4):55-58. GAO Shusheng,YU Xinghe,LIU Huaxun.Impact of slippage effect on shale gas well productivity[J].Natural Gas Industry,2011,31(4):55-58. [18] BESKOK A,KARNIADAKIS G E.A model for flows in channels,pipes,and ducts at micro and nano scales[J].Microscale Thermophysical Engineering,1999,3(1):43-77.
[19] 陈守雨,刘建伟,龚万兴,等.裂缝性储层缝网压裂技术研究及应用[J].石油钻采工艺,2010,32(6):67-71. CHEN Shouyu,LIU Jianwei,GONG Wanxing,et al.Study and application on network fracturing technology in fractured reservoir[J].Oil Drilling Production Technology,2010,32(6):67-71. [20] 王文东,赵广渊,苏玉亮,等.致密油藏体积压裂技术应用[J].新疆石油地质,2013,34(3):345-348. WANG Wendong,ZHAO Guangyuan,SU Yuliang,et al.Application of network fracturing technology to tight oil reservoirs[J].Xinjiang Petroleum Geology,2013,34(3):345-348. [21] 雷群,胥云,蒋廷学,等.用于提高低-特低渗透油气藏改造效果的缝网压裂技术[J].石油学报,2009,30(2):237-241. LEI Qun,XU Yun,JIANG Tingxue,et al."Fracture network" fracturing technique for improving post-fracturing performance of low and ultra-low permeability reservoirs[J].Acta Petrolei Sinica,2009,30(2):237-241. [22] 陈作,薛承瑾,蒋廷学,等.页岩气井体积压裂技术在我国的应用建议[J].天然气工业,2010,30(10):30-32. CHEN Zuo,XUE Chengjin,JIANG Tingxue,et al.Proposals for the application of fracturing by stimulated reservoir volume(SRV) in shale gas wells in China[J].Natural Gas Industry,2010,30(10):30-32. [23] WITHERSPOON P A,WANG J S Y,IWAI K,et al.Validity of cubic law for fluid flow in a deformable rock fracture[J].Water Resources Research,1980,16(6):1016-1024.
[24] BLASKOVICH F,CAIN G M,SONIER F,et al.A multicomponent isothermal system for efficient reservoir simulation[R].SPE 11480,1983.
[25] WARREN J E,ROOT P J.The behavior of naturally fractured reservoirs[R].SPE 426,1963.
[26] LAMPE V.Modelling fluid flow and heat transport in fractured porous media[D].Bergen:University of Bergen,2013.
[27] HILL A C,THOMAS G W.A new approach for simulating complex fractured reservoirs[R].SPE 13537,1985.
[28] HO C K.Dual porosity vs.dual permeability models of matrix diffusion in fractured rock:to be submitted to the International High-Level Radioactive Waste Conference,Lus Vegas,NV,April 29-May 3,2001[R].
[29] 姚军,王子胜,张允,等.天然裂缝性油藏的离散裂缝网络数值模拟方法[J].石油学报,2010,31(2):284-288. YAO Jun,WANG Zisheng,ZHANG Yun,et al.Numerical simulation method of discrete fracture network for naturally fractured reservoirs[J].Acta Petrolei Sinica,2010,31(2):284-288. [30] NOORISHAD J,MCHRAN M.An upstream finite element method for solution of transport equation in fractured porous media[J].Water Resources Research,1982,18(3):588-596.
[31] BACA R G,ARNETT R C,LANGFORD D W.Modeling fluid-flow in fractured porous rock masses by finite-element techniques[J].International Journal for Numerical Methods in Fluids,1984,4(4):337-348.
[32] CARLSON E S,MERCER J C.Devonian shale gas production:mechanisms and simple models[J].Journal of Petroleum Technology,1991,43(4):476-482.
[33] DINGA D Y,WU Y S,JEANNIN L.Efficient simulation of hydraulic fractured wells in unconventionalreservoirs[J].Journal of Petroleum Science and Engineering,2014,122:631-642.
[34] WANG Cong,WU Yushu.Modeling analysis of transient pressure and flow behavior at horizontal wells with multi-stage hydraulic fractures in shale gas reservoirs[R].SPE 168966,2014.
[35] JIANG Jiamin,SHAO Yuanyuan,YOUNIS R M.Development of a multi-continuum multi-component model for enhanced gas recovery and CO2 storage in fractured shale gas reservoirs[R].SPE 169114,2014.
[36] CIPOLLA C L,LOLON E,MAYERHOFER M J.Reservoir modeling and production evaluation in shale-gas reservoirs[R].IPTC 13185,2009.
-
期刊类型引用(22)
1. 邓华根,韩成,王应好. 海上页岩油探井测试大规模压裂技术及实践. 化学工程与装备. 2025(02): 38-42 . 百度学术
2. 柳军,袁明健,杜智刚. 分簇射孔管串泵送排量模型及影响因素分析. 中国海上油气. 2025(02): 198-209 . 百度学术
3. 杜辉,范克明,吴晨宇,石胜男,王力,李庆松. 大庆泥页岩储层支撑剂嵌入导流能力实验研究. 石油工业技术监督. 2024(01): 1-6 . 百度学术
4. 李兴,廉冬. 页岩油伴生气二氧化碳浓度连续监测技术研究. 石油化工自动化. 2024(01): 77-79 . 百度学术
5. 武晓光,龙腾达,黄中伟,高文龙,李根生,谢紫霄,杨芮,鲁京松,马金亮. 页岩油多岩性交互储层径向井穿层压裂裂缝扩展特征. 石油学报. 2024(03): 559-573+585 . 百度学术
6. 王成龙,韩成,徐靖,郭宇堃,陈力. 海上大规模压裂地面流程设计及研究. 中国高新科技. 2024(06): 81-83 . 百度学术
7. 刘正伟,余常燕,余琦昌,梁云,王勇. 页岩油藏提高采收率技术现状、瓶颈及对策. 化学工程师. 2024(06): 64-68 . 百度学术
8. Li Wang,Chen-Hao Gao,Rui-Ying Xiong,Xiao-Jun Zhang,Ji-Xiang Guo. Development review and the prospect of oil shale in-situ catalysis conversion technology. Petroleum Science. 2024(02): 1385-1395 . 必应学术
9. 张茜,苏玉亮,王文东,文嘉熠. 基于多段压裂缝-井筒耦合流动模型的页岩油水平井段长度优化研究. 油气地质与采收率. 2024(03): 112-122 . 百度学术
10. 郭旭升,魏志红,魏祥峰,刘珠江,陈超,王道军. 四川盆地侏罗系陆相页岩油气富集条件及勘探方向. 石油学报. 2023(01): 14-27 . 百度学术
11. 廖璐璐,李根生,宋先知,冯连勇,高启超,程世忠. 我国脱碳路径与油公司能源转型策略研究. 石油钻探技术. 2023(01): 115-122 . 本站查看
12. 杨晋玉,陈晓平,李超,郑奎,张宝娟,陈春恒. 基于经济效益评价的页岩油水平井加密调整参数优化——以鄂尔多斯盆地XAB油田长7页岩油藏为例. 中国石油勘探. 2023(04): 129-138 . 百度学术
13. 张锦宏,周爱照,成海,毕研涛. 中国石化石油工程技术新进展与展望. 石油钻探技术. 2023(04): 149-158 . 本站查看
14. 孔祥伟,卾玄吉,齐天俊,陈青,任勇,王素兵,李亭,刘宇. 页岩气井复合暂堵泵压数学模型及影响因素. 特种油气藏. 2023(04): 156-162 . 百度学术
15. 范明福,明鑫,明柱平,邱伟. 基质型页岩油储层高导流体积缝网压裂技术. 断块油气田. 2023(05): 721-727 . 百度学术
16. 吴刚,刘其伦,钟小军,王孝超,冯汉斌,赵政嘉. 束鹿页岩油密切割压裂技术——以SY302X井为例. 油气井测试. 2023(05): 36-43 . 百度学术
17. 王平,沈海超. 加拿大M致密砂岩气藏高效开发技术. 石油钻探技术. 2022(01): 97-102 . 本站查看
18. 夏娜. 页岩油储层压裂改造. 化学工程与装备. 2022(03): 47-48 . 百度学术
19. 李凤霞,王海波,周彤,韩玲. 页岩油储层裂缝对CO_2吞吐效果的影响及孔隙动用特征. 石油钻探技术. 2022(02): 38-44 . 本站查看
20. 张矿生,唐梅荣,陶亮,杜现飞. 庆城油田页岩油水平井压增渗一体化体积压裂技术. 石油钻探技术. 2022(02): 9-15 . 本站查看
21. 刘红磊,徐胜强,朱碧蔚,周林波,黄亚杰,李保林. 盐间页岩油体积压裂技术研究与实践. 特种油气藏. 2022(02): 149-156 . 百度学术
22. 黄越,金智荣. 花庄区块页岩油密切割体积压裂对策研究. 石油地质与工程. 2022(05): 96-100 . 百度学术
其他类型引用(10)
计量
- 文章访问数: 3864
- HTML全文浏览量: 85
- PDF下载量: 5539
- 被引次数: 32