页岩气藏压裂动用程度及气体流动模拟研究

赵光宇

赵光宇. 页岩气藏压裂动用程度及气体流动模拟研究[J]. 石油钻探技术, 2018, 46(4): 96-103. doi: 10.11911/syztjs.2018058
引用本文: 赵光宇. 页岩气藏压裂动用程度及气体流动模拟研究[J]. 石油钻探技术, 2018, 46(4): 96-103. doi: 10.11911/syztjs.2018058
ZHAO Guangyu. Study of a Simulation of Degree of Fracturing Production and Resulting Gas Flow in Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(4): 96-103. doi: 10.11911/syztjs.2018058
Citation: ZHAO Guangyu. Study of a Simulation of Degree of Fracturing Production and Resulting Gas Flow in Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(4): 96-103. doi: 10.11911/syztjs.2018058

页岩气藏压裂动用程度及气体流动模拟研究

doi: 10.11911/syztjs.2018058
基金项目: 

国家自然科学"页岩油多尺度运移机制及数值模拟"(编号:51674279)、国家科技重大专项"鄂南长7页岩油流动机理及数值模拟技术研究"(编号:2017ZX05049-006)资助。

详细信息
    作者简介:

    赵光宇(1970-),男,辽宁开原人,1992年毕业于西北大学石油及天然气地质学专业,高级工程师,主要从事油气田勘探开发方面的研究工作。

  • 中图分类号: TE377

Study of a Simulation of Degree of Fracturing Production and Resulting Gas Flow in Shale Gas Reservoirs

  • 摘要: 页岩储层孔喉细小、渗透率低,水力压裂后形成主裂缝及诱导裂缝网络加剧了页岩气流动的复杂性。为了准确表征页岩气拟稳态渗流特征,提出了离散裂缝耦合多重连续介质系统数学表征方法,并针对储层裂缝分布形态,利用商业数值模拟器建立了考虑吸附/解吸的页岩气藏离散裂缝耦合多重连续介质数值模拟模型。模型中采用局部网格加密的方法描述离散裂缝网络,基于建立的多重连续介质系统数学方法表征压裂后形成的密集分布微小裂缝体系。利用建立的模型,系统分析了储层横向/纵向动用程度以及裂缝导流能力、裂缝半长、裂缝排布方式等裂缝参数对页岩气泄气面积和气井产能的影响。研究发现,增大储层改造体积能够大幅度提高页岩气单井产量,但同时应当考虑主裂缝与次裂缝网络的配置关系;当储层改造体积相同时,最大限度提高裂缝与井筒之间的连通程度是提高页岩气产量的必要条件。研究认为,上述研究结果对页岩气压裂改造设计具有一定的理论指导意义。
  • [1] KANG S M,FATHI E,AMBROSE R J,et al.Carbon dioxide storage capacity of organic-rich shales[J].SPE Journal,2011,16(4):842-855.
    [2] YAN Bicheng,WANG Yuhe,KILLOUGH J E.Beyond dual-porosity modeling for the simulation of complex flow mechanisms in shale reservoirs[J].Computational Geosciences,2016,20(1):69-91.
    [3] WASAKI A,AKKUTLU I Y.Permeability of organic-rich shale[J].SPE Journal,2015,20(6):1384-1396.
    [4] 戴金星,吴伟,房忱琛,等.2000年以来中国大气田勘探开发特征[J].天然气工业,2015,35(1):1-9. DAI Jinxing,WU Wei,FANG Chenchen,et al.Exploration and development of large gas fields in China since 2000[J].Natural Gas Industry,2015,35(1):1-9.
    [5] 钱斌,张俊成,朱炬辉,等.四川盆地长宁地区页岩气水平井组"拉链式"压裂实践[J].天然气工业,2015,35(1):81-84. QIAN Bin,ZHANG Juncheng,ZHU Juhui,et al.Application of zipper fracturing of horizontal cluster wells in the Changning shale gas pilot zone,Sichuan Basin[J].Natural Gas Industry,2015,35(1):81-84.
    [6] LANGE T,SAUTER M,HEITFELD M,et al.Hydraulic fracturing in unconventional gas reservoirs:risks in the geological system part 1[J].Environmental Earth Sciences,2013,70(8):3839-3853.
    [7] LOUCKS R G,REED R M,RUPPEL S C,et al.Morphology,Genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
    [8] YUAN Bin,SU Yuliang,MOGHANLOO R G,et al.A new analytical multi-linear solution for gas flow toward fractured horizontal wells with different fracture intensity[J].Journal of Natural Gas Science and Engineering,2015,23:227-238.
    [9] WANG Wendong,SHAHVALI M,SU Yuliang.A semi-analytical fractal model for production from tight oil reservoirs with hydraulically fractured horizontal wells[J].Fuel,2015,158:612-618.
    [10] WANG Wendong,SU Yuliang,SHENG Guanglong,et al.A mathematical model considering complex fractures and fractal flow for pressure transient analysis of fractured horizontal wells in unconventional oil reservoirs[J].Journal of Natural Gas Science Engineering,2015,23:139-147.
    [11] YUAN Bin,MOGHANLOO G R,SHARIFF E,et al.Integrated investigation of dynamic drainage volume (DDV) and inflow performance relationship (transient IPR) to optimize multi-stage fractured horizontal wells in shale oil[J].Journal of Energy Resource Technology,2016,138(5):052901-1-052901-9.
    [12] 孙海,姚军,孙致学,等.页岩气数值模拟技术进展及展望[J].油气地质与采收率,2012,19(1):46-49. SUN Hai,YAO Jun,SUN Zhixue,et al.Recent development and prospect on numerical simulation of shale gas reservoirs[J].Petroleum Geology and Recovery Efficiency,2012,19(1):46-49.
    [13] 陈晓明,李建忠,郑民,等.干酪根溶解理论及其在页岩气评价中的应用探索[J].天然气地球科学,2012,23(1):14-18. CHEN Xiaoming,LI Jianzhong,ZHENG Min,et al.Kerogen solution the oryand its exploratory applicationin shale gas assessment[J].Natural Gas Geoscience,2012,23(1):14-18.
    [14] JAVADPOUR F,FISHER D,UNSWORTH M.Nanoscale gas flow in shale gas sediments[J].Journal of Canadian Petroleum Technology,2007,46(10):55-61.
    [15] 赵金洲,李志强,胡永全,等.考虑页岩储层微观渗流的压裂产能数值模拟[J].天然气工业,2015,35(6):53-58. ZHAO Jinzhou,LI Zhiqiang,HU Yongquan,et al.Numerical simulation of productivity after fracturing with consideration to micro-seepage in shale reservoirs[J].Natural Gas Industry,2015,35(6):53-58.
    [16] FREEMAN C M,MORIDIS G J,BLASINGAME T A.A numerical study of microscale flow behavior in tight gas and shale gas reservoir systems[J].Transport in Porous Media,2011,90(1):253-268.
    [17] 高树生,于兴河,刘华勋.滑脱效应对页岩气井产能影响的分析[J].天然气工业,2011, 31(4):55-58. GAO Shusheng,YU Xinghe,LIU Huaxun.Impact of slippage effect on shale gas well productivity[J].Natural Gas Industry,2011,31(4):55-58.
    [18] BESKOK A,KARNIADAKIS G E.A model for flows in channels,pipes,and ducts at micro and nano scales[J].Microscale Thermophysical Engineering,1999,3(1):43-77.
    [19] 陈守雨,刘建伟,龚万兴,等.裂缝性储层缝网压裂技术研究及应用[J].石油钻采工艺,2010,32(6):67-71. CHEN Shouyu,LIU Jianwei,GONG Wanxing,et al.Study and application on network fracturing technology in fractured reservoir[J].Oil Drilling Production Technology,2010,32(6):67-71.
    [20] 王文东,赵广渊,苏玉亮,等.致密油藏体积压裂技术应用[J].新疆石油地质,2013,34(3):345-348. WANG Wendong,ZHAO Guangyuan,SU Yuliang,et al.Application of network fracturing technology to tight oil reservoirs[J].Xinjiang Petroleum Geology,2013,34(3):345-348.
    [21] 雷群,胥云,蒋廷学,等.用于提高低-特低渗透油气藏改造效果的缝网压裂技术[J].石油学报,2009,30(2):237-241. LEI Qun,XU Yun,JIANG Tingxue,et al."Fracture network" fracturing technique for improving post-fracturing performance of low and ultra-low permeability reservoirs[J].Acta Petrolei Sinica,2009,30(2):237-241.
    [22] 陈作,薛承瑾,蒋廷学,等.页岩气井体积压裂技术在我国的应用建议[J].天然气工业,2010,30(10):30-32. CHEN Zuo,XUE Chengjin,JIANG Tingxue,et al.Proposals for the application of fracturing by stimulated reservoir volume(SRV) in shale gas wells in China[J].Natural Gas Industry,2010,30(10):30-32.
    [23] WITHERSPOON P A,WANG J S Y,IWAI K,et al.Validity of cubic law for fluid flow in a deformable rock fracture[J].Water Resources Research,1980,16(6):1016-1024.
    [24] BLASKOVICH F,CAIN G M,SONIER F,et al.A multicomponent isothermal system for efficient reservoir simulation[R].SPE 11480,1983.
    [25] WARREN J E,ROOT P J.The behavior of naturally fractured reservoirs[R].SPE 426,1963.
    [26] LAMPE V.Modelling fluid flow and heat transport in fractured porous media[D].Bergen:University of Bergen,2013.
    [27] HILL A C,THOMAS G W.A new approach for simulating complex fractured reservoirs[R].SPE 13537,1985.
    [28] HO C K.Dual porosity vs.dual permeability models of matrix diffusion in fractured rock:to be submitted to the International High-Level Radioactive Waste Conference,Lus Vegas,NV,April 29-May 3,2001[R].
    [29] 姚军,王子胜,张允,等.天然裂缝性油藏的离散裂缝网络数值模拟方法[J].石油学报,2010,31(2):284-288. YAO Jun,WANG Zisheng,ZHANG Yun,et al.Numerical simulation method of discrete fracture network for naturally fractured reservoirs[J].Acta Petrolei Sinica,2010,31(2):284-288.
    [30] NOORISHAD J,MCHRAN M.An upstream finite element method for solution of transport equation in fractured porous media[J].Water Resources Research,1982,18(3):588-596.
    [31] BACA R G,ARNETT R C,LANGFORD D W.Modeling fluid-flow in fractured porous rock masses by finite-element techniques[J].International Journal for Numerical Methods in Fluids,1984,4(4):337-348.
    [32] CARLSON E S,MERCER J C.Devonian shale gas production:mechanisms and simple models[J].Journal of Petroleum Technology,1991,43(4):476-482.
    [33] DINGA D Y,WU Y S,JEANNIN L.Efficient simulation of hydraulic fractured wells in unconventionalreservoirs[J].Journal of Petroleum Science and Engineering,2014,122:631-642.
    [34] WANG Cong,WU Yushu.Modeling analysis of transient pressure and flow behavior at horizontal wells with multi-stage hydraulic fractures in shale gas reservoirs[R].SPE 168966,2014.
    [35] JIANG Jiamin,SHAO Yuanyuan,YOUNIS R M.Development of a multi-continuum multi-component model for enhanced gas recovery and CO2 storage in fractured shale gas reservoirs[R].SPE 169114,2014.
    [36] CIPOLLA C L,LOLON E,MAYERHOFER M J.Reservoir modeling and production evaluation in shale-gas reservoirs[R].IPTC 13185,2009.
  • [1] 咸玉席, 陈超峰, 封猛, 郝有志.  页岩油藏裂缝网络多相渗流数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.2021090
    [2] 欧阳伟平, 张冕, 孙虎, 张云逸, 池晓明.  页岩油水平井压裂渗吸驱油数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.2021083
    [3] 张逸群, 于超, 程光明, 宋先知, 赵克贤.  聚能筑巢堵漏用金属割缝管爆炸成形数值模拟及试验研究, 石油钻探技术. doi: 10.11911/syztjs.2020107
    [4] 李二党, 韩作为, 高祥瑞, 马明宇, 邱钧超.  不同注气介质驱替致密油藏微观孔隙动用特征研究, 石油钻探技术. doi: 10.11911/syztjs.2020078
    [5] 王伟佳.  页岩气水平井连续油管带压打捞长电缆技术, 石油钻探技术. doi: 10.11911/syztjs.2018057
    [6] 李晓益, 艾爽, 程光明, 张杰, 吴俊霞.  鱼骨刺柔性管在碳酸盐岩缝洞型油藏应用的数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.201703018
    [7] 杨金辉, 李立, 李钟洋, 鞠斌山.  滑脱和应力敏感效应对页岩气开发动态影响的数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.201701015
    [8] 杨英涛, 温庆志, 段晓飞, 王淑婷, 王峰.  通道压裂裂缝导流能力数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.201606018
    [9] 李玉梅, 吕炜, 宋杰, 李军, 杨宏伟, 于丽维.  层理性页岩气储层复杂网络裂缝数值模拟研究, 石油钻探技术. doi: 10.11911/syztjs.201604019
    [10] 张宏方.  碳酸盐岩油藏缝洞单元离散数值模拟方法研究, 石油钻探技术. doi: 10.11911/syztjs.201502013
    [11] 王伟佳, 熊江勇, 张国锋, 赵铭, 尚琼.  页岩气井连续油管辅助压裂试气技术, 石油钻探技术. doi: 10.11911/syztjs.201505015
    [12] 赵崇镇.  新场气田须五致密气藏缝网压裂技术, 石油钻探技术. doi: 10.11911/syztjs.201506013
    [13] 宋先知, 李根生, 王梦抒, 易灿, 苏新亮.  连续油管钻水平井岩屑运移规律数值模拟, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.02.006
    [14] 邵尚奇, 田守嶒, 李根生, 贺振国.  水平井缝网压裂裂缝间距的优化, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.01.017
    [15] 卞晓冰, 蒋廷学, 贾长贵, 李双明, 王雷.  考虑页岩裂缝长期导流能力的压裂水平井产量预测, 石油钻探技术. doi: 10.11911/syztjs.201405006
    [16] 徐鹏, 刘新云, 石李保.  地应力对爆炸压裂影响规律的数值模拟研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.01.013
    [17] 张旭, 蒋廷学, 贾长贵, 张保平, 周健.  页岩气储层水力压裂物理模拟试验研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.02.014
    [18] 蒋廷学, 卞晓冰, 王海涛, 刘致屿.  页岩气水平井分段压裂排采规律研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.05.004
    [19] 沈海超, 程远方, 胡晓庆.  天然气水合物藏降压开采近井储层稳定性数值模拟, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.02.015
    [20] 孙海成, 汤达祯, 蒋廷学.  页岩气储层裂缝系统影响产量的数值模拟研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2011.05.014
  • 加载中
计量
  • 文章访问数:  3608
  • HTML全文浏览量:  35
  • PDF下载量:  5517
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-12
  • 刊出日期:  1900-01-01

目录

    /

    返回文章
    返回