抗高温环保型增黏剂的合成与性能评价

薛文佳

薛文佳. 抗高温环保型增黏剂的合成与性能评价[J]. 石油钻探技术, 2016, 44(6): 67-73. doi: 10.11911/syztjs.201606011
引用本文: 薛文佳. 抗高温环保型增黏剂的合成与性能评价[J]. 石油钻探技术, 2016, 44(6): 67-73. doi: 10.11911/syztjs.201606011
XUE Wenjia. Synthesis and Properties of High Temperature Resistance and Environmental-Friendly Viscosifier[J]. Petroleum Drilling Techniques, 2016, 44(6): 67-73. doi: 10.11911/syztjs.201606011
Citation: XUE Wenjia. Synthesis and Properties of High Temperature Resistance and Environmental-Friendly Viscosifier[J]. Petroleum Drilling Techniques, 2016, 44(6): 67-73. doi: 10.11911/syztjs.201606011

抗高温环保型增黏剂的合成与性能评价

doi: 10.11911/syztjs.201606011
详细信息
    作者简介:

    薛文佳(1995-),女,山东胶南人,中国石油大学(华东)石油工程专业在读本科生。

  • 中图分类号: TE254+.4

Synthesis and Properties of High Temperature Resistance and Environmental-Friendly Viscosifier

  • 摘要: 针对目前常用的无固相钻井液用增黏剂抗温性能和环保性能差的问题,开展了抗高温环保型增黏剂研究。以淀粉(ST)与丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、甲基丙烯酰氧乙基-N,N-二甲基丙磺酸(DMAPS)、N-乙烯基吡咯烷酮(NVP)和丁基苯乙烯(BS)为原料,采用自由基胶束聚合法合成了增黏剂ZNJ-1,研究了反应温度、反应时间、pH值和引发剂用量对淀粉单体转化率和接枝率的影响,表征了分子结构,并对其流变性能、悬浮性能和环保性能进行了评价。室内试验结果表明,最佳反应条件下,淀粉单体转化率为86.8%,接枝率为44.8%;经180℃老化16 h后,质量分数为1.0%的ZNJ-1溶液的表观黏度为26.0 mPa·s,塑性黏度为17.0 mPa·s,动切力为9.0 Pa,初切力为3.0 Pa,终切力为10.5 Pa。研究表明,增黏剂ZNJ-1的抗温、抗盐能力突出,生物降解性能良好,分子间的疏水缔合效应能够提高钻井液的悬浮稳定性能。
  • [1] MARTINS A L,WALDMANN A T A,RIBEIRO D D C,et al.The conceptual design of a non-invasive solids free drill-in fluid[R].SPE 94287,2005.
    [2] 邓强,陈刚,张洁,等.无固相钻井液体系的室内研究(I)[J].石油化工应用,2010,29(1):8-13. DENG Qiang,CHEN Gang,ZHANG Jie,et al.The indoor research of solid free drilling fluids(I)[J].Petrochemical Industry Application,2010,29(1):8-13.
    [3] 庞代静,赵林,马超.无固相钻井液完井液的开发应用现状与方向[J].内江科技,2007(4):112-113. PANG Daijing,ZHAO Lin,MA Chao.The development and application status and development direction of solid free drilling fluid[J].Neijiang Keji,2007(4):112-113.
    [4] 王晓军.抗温抗盐无固相微泡沫钻井液研制与现场应用[J].石油钻探技术,2016,44(2):58-64. WANG Xiaojun.The development and application of solid-free micro-foam drilling fluid with temperature resistance and salt tolerance[J].Petroleum Drilling Techniques,2016,44(2):58-64.
    [5] 张斌,杜小勇,杨进,等.无固相弱凝胶钻井液技术[J].钻井液与完井液,2005,22(5):35-37. ZHANG Bin,DU Xiaoyong,YANG Jin,et al.Solid free weak gelling drilling fluid technology[J].Drilling Fluid Completion Fluid,2005,22(5):35-37.
    [6] 张洁,孙金声,杨枝,等.抗高温无固相钻井液研究[J].石油钻采工艺,2011,33(4):45-47. ZHANG Jie,SUN Jinsheng,YANG Zhi,et al.A solid free drilling fluid with high temperature resistance[J].Oil Drilling Production Technology,2011,33(4):45-47.
    [7] 陈曦,郭丽梅,薛锦华.无固相钻井液用增黏剂的合成[J].精细石油化工,2016,33(1):6-11. CHEN Xi,GUO Limei,XUE Jinhua.Synthesis of tackifier for solid free drilling fluid[J].Speciality Petrochemicals,2016,33(1):6-11.
    [8] 苗海龙,王洪伟,许加放.抗高温无固相钻井液研究[J].天津科技,2009,36(5):22-23. MIAO Hailong,WANG Hongwei,XU Jiafang.A solid free fluid with high temperature resistance[J].Tianjin Science Technology,2009,36(5):22-23.
    [9] 王旭.一种无固相钻井液的室内实验研究[J].石油化工应用,2010,29(12):28-30. WANG Xu.Experimental study of clay-free drilling fluid[J].Petrochemical Industry Application,2010,29(12):28-30.
    [10] 刘建军,刘晓栋,马学勤,等.抗高温耐盐增黏剂及其无固相钻井液体系研究[J].钻井液与完井液,2016,33(2):5-11. LIU Jianjun,LIU Xiaodong,MA Xueqin,et al.Study on high temperature salt-resistant viscosifier and the formulated solids-free drilling fluid[J].Drilling Fluid Completion Fluid,2016,33(2):5-11.
    [11] 谢彬强,邱正松.无固相钻井液超高温增黏剂SDKP的结构、性能及应用[J].油田化学,2014,31(4):481-487. XIE Binqiang,QIU Zhengsong.Structure,property and application of ultra-high temperature viscosifier SDKP for solid-free drilling fluid[J].Oilfield Chemistry,2014,31(4):481-487.
    [12] 刘程,李锐,张光华,等.新型无固相钻井液体系研究新进展[J].天然气工业,2009,29(11):64-66. LIU Cheng,LI Rui,ZHANG Guanghua,et al.New progress in the research into a new type of solid-free drilling fluid system[J].Natural Gas Industry,2009,29(11):64-66.
    [13] 于培志,苏长明,张进双,等.中国石化近几年钻井液技术发展[J].钻井液与完井液,2009,26(2):113-114. YU Peizhi,SU Changming,ZHANG Jinshuang,et al.Sinopećs progresses in drilling fluid technology development[J].Drilling Fluid Completion Fluid,2009,26(2):113-114.
    [14] 杨倩云,郭保雨.钻井液用黏弹性聚合物MVPP的室内合成及性能评价[J].钻井液与完井液,2012,29(5):19-22. YANG Qianyun,GUO Baoyu.Synthesize and evaluation of viscoelastic polymer MVPP for drilling fluid[J].Drilling Fluid Completion Fluid,2012,29(5):19-22.
    [15] 鄢捷年.钻井液工艺学[M].东营:石油大学出版社,2001:63-104. YAN Jienian.Drilling fluid technology[M].Dongying:Petroleum University Press,2001:63-104.
  • [1] 王宴滨, 张辉, 高德利, 柯珂, 刘文红.  低温环境下钻柱材料力学特性试验及强度设计, 石油钻探技术. doi: 10.11911/syztjs.2021051
    [2] 赵全民, 李燕, 刘浩亚, 何青水, 唐文泉.  SXJD-Ⅰ型低伤害暂堵修井液技术, 石油钻探技术. doi: 10.11911/syztjs.2019046
    [3] 侯绪田, 赵向阳, 孟英峰, 杨顺辉, 李皋, 刘文臣.  基于真实裂缝试验装置的液液重力置换试验研究, 石油钻探技术. doi: 10.11911/syztjs.2018036
    [4] 李胜, 夏柏如, 林永学, 王显光, 韩秀贞.  焦页54-3HF井低油水比油基钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.201701009
    [5] 吴爽.  辽河油田无固相强抑制水基钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.201706008
    [6] 李振智, 孙举, 李晓岚, 杨朝光, 杜明军, 郭鹏.  新型无土相油基钻井液研究与现场试验, 石油钻探技术. doi: 10.11911/syztjs.201701006
    [7] 贾俊, 赵向阳, 刘伟.  长庆油田水基环保成膜钻井液研究与现场试验, 石油钻探技术. doi: 10.11911/syztjs.201705007
    [8] 王方祥, 王瑞和, 周卫东, 李罗鹏.  粒子冲击破岩深度的理论模型研究与室内试验, 石油钻探技术. doi: 10.11911/syztjs.201606006
    [9] 金军斌.  塔里木盆地顺北区块超深井火成岩钻井液技术, 石油钻探技术. doi: 10.11911/syztjs.201606003
    [10] 张耀元, 马双政, 王冠翔, 韩旭, 崔杰.  抗高温疏水缔合聚合物无固相钻井液研究及现场试验, 石油钻探技术. doi: 10.11911/syztjs.201606010
    [11] 赵金洲, 刘鹏, 李勇明, 毛金成.  适用于页岩的低分子烷烃无水压裂液性能研究, 石油钻探技术. doi: 10.11911/syztjs.201505003
    [12] 胡进军, 孙强, 夏小春, 魏子路, 冀腾, 项涛.  环境友好型水基钻井液GREEN-DRILL的研制与应用, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.02.015
    [13] 张浩.  铝胺基钻井液在夏1031HF井的应用, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.02.012
    [14] 胡友林, 乌效鸣, 岳前升, 刘书杰.  深水钻井气制油合成基钻井液室内研究, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.06.008
    [15] 于雷, 张敬辉, 李公让, 张虹, 李斌.  生物酶完井液的研究及在低渗油气田的应用, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.03.007
    [16] 赵怀珍, 薛玉志, 李公让, 刘宝锋, 王宏喜.  抗高温水基钻井液超高温高压流变性研究, 石油钻探技术.
    [17] 易灿, 闫振来, 赵怀珍.  超深井水基钻井液高温高压流变性试验研究, 石油钻探技术.
    [18] 刘天科, 邱正松, 裴建忠, 黄维安, 王树永.  胜科1井高温水基钻井液流变性调控技术, 石油钻探技术.
    [19] 李家芬, 苏长明, 于培志, 崔迎春.  CY-1无渗透钻井液处理剂的室内试验研究, 石油钻探技术.
    [20] 王玉芳.  有机钻井液处理剂生物降解动力学研究, 石油钻探技术.
  • 加载中
计量
  • 文章访问数:  8536
  • HTML全文浏览量:  29
  • PDF下载量:  13345
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-26
  • 修回日期:  2016-10-22
  • 刊出日期:  1900-01-01

目录

    /

    返回文章
    返回