田福春, 刘学伟, 张胜传, 张高峰, 邵力飞, 陈紫薇. 大港油田陆相页岩油滑溜水连续加砂压裂技术[J]. 石油钻探技术, 2021, 49(4): 118-124. DOI: 10.11911/syztjs.2021021
引用本文: 田福春, 刘学伟, 张胜传, 张高峰, 邵力飞, 陈紫薇. 大港油田陆相页岩油滑溜水连续加砂压裂技术[J]. 石油钻探技术, 2021, 49(4): 118-124. DOI: 10.11911/syztjs.2021021
TIAN Fuchun, LIU Xuewei, ZHANG Shengchuan, ZHANG Gaofeng, SHAO Lifei, CHEN Ziwei. Continuous Sand Fracturing Technology with Slick Water for Continental Shale Oil in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 118-124. DOI: 10.11911/syztjs.2021021
Citation: TIAN Fuchun, LIU Xuewei, ZHANG Shengchuan, ZHANG Gaofeng, SHAO Lifei, CHEN Ziwei. Continuous Sand Fracturing Technology with Slick Water for Continental Shale Oil in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 118-124. DOI: 10.11911/syztjs.2021021

大港油田陆相页岩油滑溜水连续加砂压裂技术

Continuous Sand Fracturing Technology with Slick Water for Continental Shale Oil in the Dagang Oilfield

  • 摘要: 针对页岩油水平井采用常规滑溜水压裂时存在用液量大、砂比低、增产效果不理想等问题,通过优选聚合物降阻剂,优化黏土稳定剂、破乳助排剂和过硫酸盐类破胶剂的加量,形成了调节聚合物降阻剂加量即可调控滑溜水压裂液黏度的变黏滑溜水压裂液体系。通过支撑剂导流能力模拟试验,优选了70/140目石英砂和40/70目陶粒的支撑剂组合,经先导性试验,形成了大港油田陆相页岩油滑溜水连续加砂压裂技术。该技术在G页2H井进行了现场试验,有效提高了施工效率和单位液体的携砂量,减少了压裂液用量,形成了较好的缝网体系,提高了储层改造程度,取得了良好的压裂增产效果。现场试验表明,该技术能够满足页岩油水平井滑溜水连续加砂压裂要求,可以为页岩油高效开发提供技术支撑。

     

    Abstract: Horizontal shale oil wells have the problems of high fluid volume and a low sand ratio during conventional slick water fracturing, which lead to poor stimulation effect. For this reason, a slick water system was developed with variable viscosity by selecting a polymer-based friction reducers and optimizing the dosage of clay stabilizers, demulsifying cleanup additives, and persulfate gel breakers. With the system, it was possible to adjust the viscosity of slick water by changing the dosage of polymer-based friction reducers. Then, the proppants composed of 70/140 mesh quartz sand and 40/70 mesh ceramsite were selected after a conductivity simulation. Finally, after pilot tests, a slick water technology for continuous sand fracturing suitable for the continental shale oil reservoirs in the Dagang Oilfield was proposed, which was tested in Well GY2H. As a result, the technology increased the construction efficiency and silt carrying capacity of the unit liquid, reduced the consumption of the fracturing fluid, and formed an effective fracture-network system, achieving excellent reservoir reformation and fracturing stimulation. The field tests proved that this technology could accommodate continuous sand fracturing with slick water in horizontal shale oil wells, providing a technical support for the efficient development of shale oil.

     

/

返回文章
返回