刘浩亚, 鲍洪志, 刘亚青, 何青水, 胡志强, 金鑫. 改性高铝水泥浆的负温硬化性能及其增强机制[J]. 石油钻探技术, 2021, 49(2): 54-60. DOI: 10.11911/syztjs.2020129
引用本文: 刘浩亚, 鲍洪志, 刘亚青, 何青水, 胡志强, 金鑫. 改性高铝水泥浆的负温硬化性能及其增强机制[J]. 石油钻探技术, 2021, 49(2): 54-60. DOI: 10.11911/syztjs.2020129
LIU Haoya, BAO Hongzhi, LIU Yaqing, HE Qingshui, HU Zhiqiang, JIN Xin. Hardening Properties and Enhancement Mechanisms of Modified Alumina Cement at Minus Temperature[J]. Petroleum Drilling Techniques, 2021, 49(2): 54-60. DOI: 10.11911/syztjs.2020129
Citation: LIU Haoya, BAO Hongzhi, LIU Yaqing, HE Qingshui, HU Zhiqiang, JIN Xin. Hardening Properties and Enhancement Mechanisms of Modified Alumina Cement at Minus Temperature[J]. Petroleum Drilling Techniques, 2021, 49(2): 54-60. DOI: 10.11911/syztjs.2020129

改性高铝水泥浆的负温硬化性能及其增强机制

Hardening Properties and Enhancement Mechanisms of Modified Alumina Cement at Minus Temperature

  • 摘要: 针对负温环境下固井水泥浆水化反应减缓甚至停滞,导致固井施工难以进行的问题,开展了改性高铝水泥浆的硬化特性优化和早期强度的增强机制研究。在0,–10和–18 ℃温度下,进行了改性高铝水泥浆的凝结时间、流动度及抗压强度等性能对比试验,研究了负温环境下水泥浆关键性能的变化规律及与凝结时间调节剂SCEG之间的关系;在分析水化产物物相组成和微观结构的基础上,研究了水泥浆负温硬化机制,并通过添加石膏促进AFt生成来提高水泥石的抗压强度。试验表明:–18~0 ℃温度下,改性高铝水泥浆中添加占水泥质量0~3%的SCEG,该水泥浆可在0.3~6.0 h内硬化;该水泥浆24 h抗压强度达9.7~11.2 MPa,添加占水泥质量10%~15%的石膏后,水泥石抗压强度可提高30%左右。XRD测试发现,负温环境下水泥水化矿物主要为铝酸盐熟料而非硅酸盐熟料,产物主要为Ca2Al(Al,Si)2O7、AFm、AFt及少量硅酸盐水化产物C–S–H,且AFt含量越高,水泥石抗压强度越高。研究表明,改性高铝水泥具有良好的负温硬化能力,添加适量的石膏可提高水泥水化产物中AFt的含量,有助于提高水泥石的抗压强度。

     

    Abstract: Because the hydration reaction of cement is unable to proceed below the freezing point and hinders cementing, a research on the hardening properties optimization and enhancement mechanism for early strength of modified alumina cement was conducted. Changes in setting time, fluidity and compressive strength of cement at different temperatures of 0, −10, and −18 °C were compared, and the relationship between these changes at different temperatures and the setting time modifier SCEG was studied. Based on the analysis of phase compositions and microstructures of hydration products, the mechanism of hardening of cement at minus temperature was studied, and gypsum was added to promote the formation of AFt so as to enhance the compressive strength of hardened cement paste. The experiment demonstrated that the cement can be hardened within 0.3–6.0 hour when SCEG about 0–3% cement mass is added to the modified alumina cement from 0 °C to −18 °C. In that case, its compressive strength can reach 9.7–11.2 MPa within 24 hours and even rise 30% after gypsum about 10%–15% cement mass is added. X-ray diffraction (XRD) analysis indicates that the main hydrated mineral in the cement is aluminate clinker instead of silicate clinker at minus temperature, with Ca2Al(Al,Si)2O7, AFm, AFt, and a few C-S-H as the main products. To be specific, a higher content of AFt can bring higher compressive strength of hardened cement paste. The results show that modified alumina cement possesses optimized hardening properties at minus temperatures, and appropriate amount of gypsum can increase the content of AFt in hydration products, improving the compressive strength of hardened cement paste.

     

/

返回文章
返回