曾波, 王星皓, 黄浩勇, 张柟乔, 岳文翰, 邓琪. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术, 2020, 48(5): 77-84. DOI: 10.11911/syztjs.2020073
引用本文: 曾波, 王星皓, 黄浩勇, 张柟乔, 岳文翰, 邓琪. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术, 2020, 48(5): 77-84. DOI: 10.11911/syztjs.2020073
ZENG Bo, WANG Xinghao, HUANG Haoyong, ZHANG Nanqiao, YUE Wenhan, DENG Qi. Key Technology of Volumetric Fracturing in Deep Shale Gas Horizontal Wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77-84. DOI: 10.11911/syztjs.2020073
Citation: ZENG Bo, WANG Xinghao, HUANG Haoyong, ZHANG Nanqiao, YUE Wenhan, DENG Qi. Key Technology of Volumetric Fracturing in Deep Shale Gas Horizontal Wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77-84. DOI: 10.11911/syztjs.2020073

川南深层页岩气水平井体积压裂关键技术

Key Technology of Volumetric Fracturing in Deep Shale Gas Horizontal Wells in Southern Sichuan

  • 摘要: 针对川南深层页岩气水平井压裂技术不成熟、关键参数不合理和压裂后单井产量低的问题,在综合分析已压裂井压裂效果的基础上,结合川南深层页岩储层地质工程特点,以提高缝网复杂程度、增大裂缝改造体积、维持裂缝长期导流能力为核心,采用室内试验与数值模拟相结合的方式,优化了压裂工艺和关键参数,形成了以“密切割分段+短簇距布缝、大孔径等孔径射孔、大排量低黏滑溜水加砂、高强度小粒径组合支撑剂、大规模高强度改造”为主的深层页岩气水平井体积压裂关键技术。Z3井应用该技术后,获得了21.3×104 m3/d的产气量,较同区块未用该技术的井提高1倍以上;川南地区多口深层页岩气水平井应用该技术后获得高产,说明该技术有较好的适应性,可推广应用。川南深层页岩气水平井体积压裂关键技术为3 500~4 500 m页岩气资源的有效动用奠定了基础。

     

    Abstract: There are persistent problems of immature fracturing technology, unreasonable key parameters, and low production of single well after fracturing in deep shale gas horizontal wells in Southern Sichuan. This paper introduces a process for optimizing the fracturing process and key parameters based on laboratory evaluation and numerical simulation by combining the geological engineering characteristics of deep shale reservoirs in Southern Sichuan through comprehensive analysis of fracturing effect of fractured wells. It focuses on improving the complexity of fracture networks, increasing the volume of fracturing stimulation, and maintaining the long-term conductivity of fractures. The key technology of volumetric fracturing for deep shale gas horizontal wells that focuses on“dense stage+short cluster spacing, equal-holesize large hole perforation, sand fracturing with low viscosity slick water at high pumping rate, high strength proppant with small particle size combinations, and large-scale fracturing with high-strength”is formed. After the application of this technology in Well Z3, its production achieved the rate of 21.3×104m3/d, which doubled and even more than that of wells with normal fracturing methods in the same block. In addition, high-yield production was achieved in several gas wells by applying this technology in deep shale gas horizontal wells in Southern Sichuan. This demonstrated that the technology has good adaptability and can be widely used. The successful application of this key technology in Southern Sichuan has laid a foundation for effective development of shale gas resources with depth around 3 500–4 500 m in Southern Sichuan.

     

/

返回文章
返回