Study on Wellbore Instability of Bedded Shale Gas Horizontal Wells under Chemo-Mechanical Coupling
-
摘要:
针对现有页岩气水平井井壁稳定力化耦合分析大都仅考虑水化作用对岩石强度的影响,鲜有考虑水化应力应变影响的情况,以弹性力学和岩石力学等理论为基础,同时考虑水化作用对岩石力学参数的弱化效应和附加水化应力,建立了力化耦合作用下层理性页岩气水平井井壁坍塌压力预测模型,研究了层理性页岩气水平井井壁失稳机理,分析了影响井壁稳定的因素及影响规律。研究结果表明:存在层理面时,会使坍塌压力大幅升高;沿层理面方位钻进,井壁稳定性最好;当水化时间一定时,坍塌压力随距井壁径向距离增加而降低,水化时间越长,近井壁处易坍塌区域越大;考虑水化应力影响后坍塌压力会大幅升高,在设计钻井液密度时,不能忽略水化应力的影响。研究成果丰富了页岩气水平井井壁失稳理论,对层理性页岩气水平井钻井设计具有指导作用。
Abstract:In view of the fact that most of the existing chemo-mechanical coupling analysis of the wellbore stability in shale gas horizontal wellsonly considered the influence of hydration on rock strength, but rarely considered the influence of hydration strain and stress, this paper, based on the theories of elasticity and rock mechanics, and by considering the weakening effect of hydration on rock mechanical parameters and the additional hydration stress, established the prediction model of wellbore collapse pressure of bedded shale gas horizontal wells under chemo-mechanical coupling, studied the mechanism of wellbore instability of bedded shale gas horizontal wells, and analyzed the factors affecting wellbore stability and their influencing laws. The results showed that when there was a bedding plane, the collapse pressure would increase greatly; the wellbore stability was the best when drilling along the bedding plane; when the hydration time was fixed, the collapse pressure would decrease with the increase of the radial distance from the wellbore, and the longer the hydration time was, the larger the area near the wellbore that was prone to collapse would be; and after considering the influence of the hydration stress, the collapse pressure increased greatly, sothe influence of hydration stress could not be ignored when designing the drilling fluid density. The research results enriched the wellbore instability theories of shale gas horizontal wells, and played a guiding role in the drilling design of bedded shale gas horizontal wells.
-
Key words:
- shale gas /
- horizontalwell /
- hydration /
- bedding plane /
- hole stabilization /
- collapse pressure
-
-
[1] 陈安明,龙志平,周玉仓,等. 四川盆地外缘常压页岩气水平井低成本钻井技术探讨[J]. 石油钻探技术, 2018, 46(6): 9–14.CHEN Anming, LONG Zhiping, ZHOU Yucang, et al. Discussion on low-cost drilling technologies of normal pressure shale gas in the outer margin of the Sichuan Basin[J]. Petroleum Drilling Techniques, 2018, 46(6): 9–14. [2] JAEGER J C, COOK N G W, ZIMMERMAN R. Fundamentals of rock mechanics[M]. Boston: Wiley-Blackwell, 2007. [3] 刘向君,丁乙,罗平亚,等. 钻井卸载对泥页岩地层井壁稳定性的影响[J]. 石油钻探技术, 2018, 46(1): 10–16.LIU Xiangjun, DING Yi, LUO Pingya, et al. The impact of drilling unloading on wellbore stability of shale formations[J]. Petroleum Drilling Techniques, 2018, 46(1): 10–16. [4] 梁利喜,刘向君,许强. 发育有切割井眼结构面的井壁稳定性评价研究[J]. 石油钻探技术, 2007, 35(3): 27–29. doi: 10.3969/j.issn.1001-0890.2007.03.008LIANG Lixi, LIU Xiangjun, XU Qiang. Study on evaluation of wellbore stability in wells with structural planes[J]. Petroleum Drilling Techniques, 2007, 35(3): 27–29. doi: 10.3969/j.issn.1001-0890.2007.03.008 [5] 刘向君,陈一健,肖勇. 岩石软弱面产状对井壁稳定性的影响[J]. 西南石油学院学报, 2001, 23(6): 12–13.LIU Xiangjun, CHEN Yijian, XIAO Yong. Effect of weak’ plane dip angle and dip azimuth angle on wellbore stability[J]. Journal of Southwest Petroleum Institute, 2001, 23(6): 12–13. [6] 洪国斌,陈勉,卢运虎,等. 川南深层页岩各向异性特征及对破裂压力的影响[J]. 石油钻探技术, 2018, 46(3): 78–85.HONG Guobin, CHEN Mian, LU Yunhu, et al. Study on the anisotropy characteristics of deep shale in the Southern Sichuan Basin and their impact on fracturing Pressure[J]. Petroleum Drilling Techniques, 2018, 46(3): 78–85. [7] LIANG Chuan, CHEN Mian, JIN Yan, et al. Wellbore stability model for shale gas reservoir considering the coupling of multi-weakness planes and porous flow[J]. Journal of Natural Gas Science and Engineering, 2014, 21(21): 364–378. [8] 温航,陈勉,金衍,等. 硬脆性泥页岩斜井段井壁稳定力化耦合研究[J]. 石油勘探与开发, 2014, 41(6): 748–754. doi: 10.11698/PED.2014.06.16WEN Hang, CHEN Mian, JIN Yan, et al. A chemo-mechanical coupling model of deviated borehole stability in hard brittle shale[J]. Petroleum Exploration and Development, 2014, 41(6): 748–754. doi: 10.11698/PED.2014.06.16 [9] 马天寿,陈平. 层理性页岩水平井井壁稳定性分析[J]. 中南大学学报(自然科学版), 2015, 46(4): 1375–1383. doi: 10.11817/j.issn.1672-7207.2015.04.027MA Tianshou, CHEN Ping. Analysis of wellbore stability for horizontal wells instratification shale[J]. Journal of Central South University (Science and Technology), 2015, 46(4): 1375–1383. doi: 10.11817/j.issn.1672-7207.2015.04.027 [10] 马天寿,陈平. 层理页岩水平井井周剪切失稳区域预测方法[J]. 石油钻探技术, 2014, 42(5): 26–36.MA Tianshou, CHEN Ping. Prediction method of shear instability region around the borehole for horizontal wells in bedding shale[J]. Petroleum Drilling Techniques, 2014, 42(5): 26–36. [11] 马天寿, 陈平. 页岩层理对水平井井壁稳定的影响[J]. 西南石油大学学报(自然科学版), 2014, 36(5): 97–104. doi: 10.11885/j.issn.1674-5086.2013.06.30.03MA Tianshou, CHEN Ping. Influence of shale bedding plane onwellbore stability for horizontal wells[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(5): 97–104. doi: 10.11885/j.issn.1674-5086.2013.06.30.03 [12] 覃园圆.泥页岩水化对井壁稳定性影响研究[D].西安: 西安石油大学, 2014.QIN Yuanyuan. Effects of hydraulic on shale formation wellbore stability[D]. Xi’an: Xi’an Shiyou University, 2014. [13] YEW C H, CHENEVERT M E, WANG C l, et al. Wellbore stress distribution produced by moisture adsorption[J]. SPE Drilling Engineering, 1990, 5(4): 311–316. doi: 10.2118/19536-PA [14] 黄荣樽,陈勉,邓金根,等. 泥页岩井壁稳定力学与化学的耦合研究[J]. 钻井液与完井液, 1995, 12(3): 18–24.HUANG Rongzun, CHEN Mian, DENG Jingen, et al. Study on shale stability of ellbore by mechanics coupling with chemistry method[J]. Drilling Fluid & Completion Fluid, 1995, 12(3): 18–24. -