高频电磁加热稠油储层温度分布及其影响因素分析

王正旭 高德利

王正旭, 高德利. 高频电磁加热稠油储层温度分布及其影响因素分析[J]. 石油钻探技术, 2020, 48(1): 90-97. doi: 10.11911/syztjs.2019128
引用本文: 王正旭, 高德利. 高频电磁加热稠油储层温度分布及其影响因素分析[J]. 石油钻探技术, 2020, 48(1): 90-97. doi: 10.11911/syztjs.2019128
WANG Zhengxu, GAO Deli. Temperature Distribution of Heavy Oil Reservoirs under High Frequency Electromagnetic Heating and an Analysis of Its Influencing Factors[J]. Petroleum Drilling Techniques, 2020, 48(1): 90-97. doi: 10.11911/syztjs.2019128
Citation: WANG Zhengxu, GAO Deli. Temperature Distribution of Heavy Oil Reservoirs under High Frequency Electromagnetic Heating and an Analysis of Its Influencing Factors[J]. Petroleum Drilling Techniques, 2020, 48(1): 90-97. doi: 10.11911/syztjs.2019128

高频电磁加热稠油储层温度分布及其影响因素分析

doi: 10.11911/syztjs.2019128
基金项目: 

国家科技重大专项课题“复杂结构井、丛式井设计与控制新技术”(编号:2017ZX05009–003)、国家自然科学基金创新研究群体项目“复杂油气井钻井与完井基础研究”(编号:51821092)和国家电网公司总部科技项目“再电气化推进技术路线及应用政策研究”(编号:SGFJJY00GHJS1800087)联合资助

详细信息
    作者简介:

    王正旭(1987—),男,河北蔚县人,2013年毕业于河北联合大学石油工程专业,2016年获中国石油大学(北京)油气井工程专业硕士学位,在读博士研究生,主要从事油气井力学与控制方面的研究。E-mail:wzxyywzx@163.com

  • 中图分类号: TE357.4

Temperature Distribution of Heavy Oil Reservoirs under High Frequency Electromagnetic Heating and an Analysis of Its Influencing Factors

  • 摘要: 为了准确分析高频电磁加热过程中影响稠油储层温度分布的因素,以电磁场和传热理论为基础,考虑稠油储层电导率、相对介电常数随频率变化,导热系数、比热容随温度变化的实际情况,建立了描述储层性质动态变化的数学模型,并采用多物理场模拟软件COMSOL求解数学模型,采用对比法分析了不同因素对温度分布的影响规律。计算分析发现:电磁波功率的提高有助于增大储层加热深度;较大的电磁波频率可引起波源附近储层温度升高,但温度随深度增大急剧下降;考虑储层性质动态变化时计算出的温度分布,与假设储层性质恒定时的计算结果存在差异;在一定变化范围内,储层温度值随相对介电常数和电导率增大而增大。研究结果表明,储层性质、电磁波功率和频率对储层的温度分布有明显影响,建立的考虑储层性质动态变化的数学模型为高频电磁加热稠油技术的现场应用提供了理论依据。
  • 图  1  电磁加热稠油储层示意

    Figure  1.  Schematic of heavy oil reservoir under electromagnetic heating

    图  2  电磁加热稠油储层三维几何模型

    Figure  2.  Three-dimensional geometric model of a heavy oil reservoir under electromagnetic heating

    图  3  电磁波频率对储层电导率和相对介电常数的影响

    Figure  3.  Changing laws of electric conductivity and relative permittivity of reservoir with frequency

    图  4  电磁波衰减示意

    Figure  4.  Schematic of electromagnetic waves attenuation

    图  5  电磁加热稠油储层物理网格划分

    Figure  5.  Grid partition of the heavy oil reservoir under electromagnetic heating

    图  6  电场分布模拟结果

    Figure  6.  Calculation results of electric field distribution

    图  7  储层温度随时间的变化规律

    Figure  7.  Changing relationship of reservoir temperature with time

    图  8  不同电磁波功率下储层温度分布三维图

    Figure  8.  Three-dimensional map of reservoir temperature distribution under different electromagnetic wave powers

    图  9  电磁波频率对储层温度分布的影响

    Figure  9.  The influence of electromagnetic wave frequency on reservoir temperature distribution

    图  10  储层电导率和相对介电常数随电磁波频率变化和恒定时的温度分布对比

    Figure  10.  A comparison of temperature distributions based on the constant and variable electrical conductivity and relative permittivity of reservoir with temperature

    图  11  储层导热系数和比热容随温度变化和恒定时的温度分布对比

    Figure  11.  A comparison of temperature distributions based on the constant and variable thermal conductivity and specific heat of reservoir with temperature

    图  12  储层相对介电常数对温度分布的影响

    Figure  12.  The influence of reservoir relative permittivity on temperature distribution

    图  13  储层电导率对温度分布的影响

    Figure  13.  The influence of reservoir electric conductivity on temperature distribution

  • [1] BERA A, BABADAGLI T. Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: a review[J]. Applied Energy, 2015, 151: 206–226. doi:  10.1016/j.apenergy.2015.04.031
    [2] WANG Zhengxu, GAO Deli, FANG Jun. Numerical simulation of RF heating heavy oil reservoir based on the coupling between electromagnetic and temperature field[J]. Fuel, 2018, 220: 14–24. doi:  10.1016/j.fuel.2018.02.012
    [3] GHANNADI S, IRANI M, CHALATURNYK R. Overview of performance and analytical modeling techniques for electromagnetic heating and applications to steam-assisted-gravity- drainage process startup[J]. SPE Journal, 2016, 21(2): 311–333. doi:  10.2118/178427-PA
    [4] WISE S, PATTERSON C. Reducing supply cost with EseiehTM pronounced easy[R]. SPE 180729, 2016.
    [5] 刘栋梁,顾继俊. 稠油热采技术现状及发展趋势[J]. 当代化工, 2018, 47(7): 1445–1447, 1451. doi:  10.3969/j.issn.1671-0460.2018.07.036

    LIU Dongliang, GU Jijun. Present situation and development trend of heavy oil thermal recovery technology[J]. Contemporary Chemical Industry, 2018, 47(7): 1445–1447, 1451. doi:  10.3969/j.issn.1671-0460.2018.07.036
    [6] 王玉斗,关继腾,王殿生. 电加热开采稠油油藏影响因素研究[J]. 石油钻探技术, 2004, 32(6): 53–55. doi:  10.3969/j.issn.1001-0890.2004.06.018

    WANG Yudou, GUAN Jiteng, WANG Diansheng. Study on factors affecting electrical heating technique to enhance heavy oil recovery[J]. Petroleum Drilling Techniques, 2004, 32(6): 53–55. doi:  10.3969/j.issn.1001-0890.2004.06.018
    [7] 朱广海,刘章聪,熊旭东,等. 电加热稠油热采井筒温度场数值计算方法[J]. 石油钻探技术, 2019, 47(5): 110–115. doi:  10.11911/syztjs.2019109

    ZHU Guanghai, LIU Zhangcong, XIONG Xudong, et al. Numerical calculation method of the wellbore temperature field for electric heating heavy oil thermal recovery[J]. Petroleum Drilling Tech-niques, 2019, 47(5): 110–115. doi:  10.11911/syztjs.2019109
    [8] ABDULRAHMAN M M, MERIBOUT M. Antenna array design for enhanced oil recovery under oil reservoir constraints with experimental validation[J]. Energy, 2014, 66: 868–880. doi:  10.1016/j.energy.2014.01.002
    [9] 刘晓,苑塔亮,王澈,等. 电磁加热技术开采稠油和沥青油藏的研究进展[J]. 当代化工, 2015, 44(12): 2796–2801. doi:  10.3969/j.issn.1671-0460.2015.12.020

    LIU Xiao, YUAN Taliang, WANG Che, et al. Research progress in electromagnetic heating technology for heavy oil and bitumen reservoir recovery[J]. Contemporary Chemical Industry, 2015, 44(12): 2796–2801. doi:  10.3969/j.issn.1671-0460.2015.12.020
    [10] 杨兆中, 齐双瑜, 李小刚, 等. 电磁加热技术在石化能源中的应用进展[J]. 世界科技研究与发展, 2017, 39(2): 159–163.

    YANG Zhaozhong, QI Shuangyu, LI Xiaogang, et al. Application of electromagnetic heating technology in petrochemical energy[J]. World Sci-Tech R&D, 2017, 39(2): 159–163.
    [11] RITCHEY H W. Radiation heating: US2757738[P]. 1956-08-07.
    [12] 苗青,张传农,高新楼,等. 电磁法改善易凝高粘原油流动性的实验[J]. 油气储运, 2013, 32(11): 1167–1170.

    MIAO Qing, ZHANG Chuannong, GAO Xinlou, et al. Experimental study on improving flowability of high viscous and gelled crude oil with electromagnetic method[J]. Oil & Gas Storage and Transportation, 2013, 32(11): 1167–1170.
    [13] 冯金德,蒲春生,冯金城. 电磁加热解除近井地层凝析油堵塞的数学模型[J]. 天然气工业, 2005, 25(11): 85–87. doi:  10.3321/j.issn:1000-0976.2005.11.028

    FENG Jinde, PU Chunsheng, FENG Jincheng. Mathematical model to remove condensate blockage by electromagnetic heating[J]. Natural Gas Industry, 2005, 25(11): 85–87. doi:  10.3321/j.issn:1000-0976.2005.11.028
    [14] DAVLETBAEV A, KOVALEVA L, BABADAGLI T. Combining solvent injection, electromagnetic heating, and hydraulic fracturing for multistage heavy oil recovery[J]. Journal of Electromagnetic Waves & Applications, 2016, 30(2): 207–224.
    [15] CHEN Jinhong, GEORGI D T, LIU Huihai. Electromagnetic thermal stimulation of shale reservoirs for petroleum production[J]. Journal of Natural Gas Science and Engineering, 2018, 59: 183–192. doi:  10.1016/j.jngse.2018.08.029
    [16] HU Lanxiao, LI Huazhou A, BABADAGLI T, et al. A semianalytical model for simulating combined electromagnetic heating and solvent-assisted gravity drainage[J]. SPE Journal, 2018, 23(4): 1248–1270. doi:  10.2118/189979-PA
    [17] GHANNADI S, IRANI M, CHALATURNYK R. Induction and radio frequency heating strategies for steam-assisted gravity drainage start-up phase[R]. SPE 170037, 2014.
    [18] BOGDANOV I, CAMBON S, PRINET C. Analysis of heavy oil production by radio-frequency heating[R]. SPE 172862, 2014.
    [19] 陈新谋, 刘悟日.高频介质加热技术[M].北京: 科学出版社, 1979: 2–9.

    CHEN Xinmou, LIU Wuri. Technology of high-frequency dielectric heating[M]. Beijing: Science Press, 1979: 2–9.
    [20] WANG Zhengxu, GAO Deli, LIU Kui, et al. Study on radio frequency heating pattern of heavy oil reservoir based on multi-antenna configuration[R]. SPE 193774, 2018.
    [21] WILSON A. Radio-frequency heating combined with solvent injection for heavy-oil recovery[J]. Journal of Petroleum Technology, 2017, 69(3): 68–69. doi:  10.2118/0317-0068-JPT
    [22] IRANI M, SAEEDFAR A. Equilibrium analysis of desiccated zone growth during radio-frequency heating[R]. SPE 189771, 2018.
    [23] BERA A, BABADAGLI T. Effect of native and injected nano-particles on the efficiency of heavy oil recovery by radio frequency electromagnetic heating[J]. Journal of Petroleum Science & Engi-neering, 2017, 153: 244–256.
    [24] BIENTINESI M, PETARCA L, CERUTTI A, et al. A radiofrequency/microwave heating method for thermal heavy oil recovery based on a novel tight-shell conceptual design[J]. Journal of Petroleum Science and Engineering, 2013, 107: 18–30. doi:  10.1016/j.petrol.2013.02.014
    [25] SADEGHI A, HASSANZADEH H, HARDING T G. Thermal analysis of high frequency electromagnetic heating of lossy porous media[J]. Chemical Engineering Science, 2017, 172: 13–22. doi:  10.1016/j.ces.2017.06.013
    [26] SADEGHI A, HASSANZADEH H, HARDING T G. A com-parative study of oil sands preheating using electromagnetic waves, electrical heaters and steam circulation[J]. International Journal of Heat and Mass Transfer, 2017, 111: 908–916. doi:  10.1016/j.ijheatmasstransfer.2017.04.060
    [27] SADEGHI A, HASSANZADEH H, HARDING T G. Modeling of desiccated zone development during electromagnetic heating of oil sands[J]. Journal of Petroleum Science and Engineering, 2017, 154: 163–171. doi:  10.1016/j.petrol.2017.04.033
    [28] BERMÚDEZ J M, ACOSTA W, ANDARCIA L, et al. Assisted extra heavy oil sampling by electromagnetic heating[R]. SPE 171073, 2014.
    [29] CHUTE F S, VERMEULEN F E, CERVENAN M R, et al. Electrical properties of Athabasca oil sands[J]. Canadian Journal of Earth Sciences, 1979, 16(10): 2009–2021. doi:  10.1139/e79-187
    [30] 亚瑟·冯·希佩尔.电介质与波[M].影印版.西安: 西安交通大学出版社, 2011: 19–28.

    von HIPPEL Arthur. Dielectrics and waves[M]. photocopy edition. Xi’an: Xi’an Jiaotong University Press, 2011: 19–28.
    [31] 王园, 杨显清, 赵家升.电磁场与电磁波基础教程[M].北京: 高等教育出版社, 2008: 173–174, 183.

    WANG Yuan, YANG Xianqing, ZHAO Jiasheng. Elementary course of electromagnetic field and electromagnetic wave[M]. Beijing: High Education Press, 2008: 173–174, 183.
    [32] 章熙民, 朱彤, 安青松, 等.传热学[M].北京: 中国建筑工业出版社, 2014: 18–19.

    ZHANG Ximin, ZHU Tong, AN Qingsong, et al. Heat transfer[M]. Beijing: China Architecture & Building Press, 2014: 18–19.
  • [1] 蒲文学, 范光第, 朱建建, 赵国山.  磁性随钻测斜仪所需无磁钻具长度及影响因素研究, 石油钻探技术. doi: 10.11911/syztjs.2022090
    [2] 李然然, 张凯, 柴麟, 张龙, 刘宝林.  机械式垂直钻具稳定平台影响因素模拟研究, 石油钻探技术. doi: 10.11911/syztjs.2021106
    [3] 张浩, 毕雪亮, 刘维凯, 徐月庆, 宋明星, 邵帅.  EM-MWD信号在钻柱中传输的影响因素研究, 石油钻探技术. doi: 10.11911/syztjs.2021128
    [4] 余意, 王雪瑞, 柯珂, 王迪, 于鑫, 高永海.  极地钻井井筒温度压力预测模型及分布规律研究, 石油钻探技术. doi: 10.11911/syztjs.2021047
    [5] 刘清友, 秦松, 毛良杰, 王国荣.  深水钻井隔水导管承载能力影响因素分析, 石油钻探技术. doi: 10.11911/syztjs.2019099
    [6] 胡亮, 马兰荣, 谷磊, 李丹丹, 韩艳浓.  高温高压对微波破岩效果的影响模拟研究, 石油钻探技术. doi: 10.11911/syztjs.2019020
    [7] 倪小威, 徐观佑, 敖旋峰, 冯加明, 艾林, 刘迪仁.  阵列侧向测井曲线极化角影响因素研究, 石油钻探技术. doi: 10.11911/syztjs.2018017
    [8] 张吉磊, 龙明, 何逸凡, 章威, 缪飞飞.  渤海Q油田隔夹层发育底水稠油油藏精细注采技术, 石油钻探技术. doi: 10.11911/syztjs.2018016
    [9] 胡亮, 肖莉, 赵建军, 尹慧博.  井下射频电磁识别影响因素研究, 石油钻探技术. doi: 10.11911/syztjs.2018015
    [10] 周娜, 姜东, 杜玮暄, 张方圆, 张俊清, 肖萍.  稠油井过泵旋流混合降黏举升技术, 石油钻探技术. doi: 10.11911/syztjs.201606014
    [11] 贾利春, 陈勉, 谭清明, 孙振, 吴嗣跃.  承压封堵裂缝止裂条件影响因素分析, 石油钻探技术. doi: 10.11911/syztjs.201601010
    [12] 崔传智, 盛倩, 姜亦栋, 杨峰, 贾培锋.  东辛油田稠油举升井筒保温对策研究及现场试验, 石油钻探技术. doi: 10.11911/syztjs.201601015
    [13] 陈绍云, 李瑷辉, 李瑞营, 王楚, 刘金玮.  大庆油田葡浅12区块浅层稠油水平井钻井技术, 石油钻探技术. doi: 10.11911/syztjs.201501022
    [14] 陶磊, 李松岩, 程时清.  稠油油藏水平井泡沫酸解堵技术, 石油钻探技术. doi: 10.11911/syztjs.201506014
    [15] 李晓益, 姚凯, 朱明.  哥伦比亚圣湖油田稠油油藏增产技术, 石油钻探技术. doi: 10.11911/syztjs.201501017
    [16] 唐述凯, 李明忠, 刘陈伟, 张国栋.  闭式热流体循环井筒温度分布规律研究, 石油钻探技术. doi: 10.11911/syztjs.201405019
    [17] 赵益忠, 孙磉礅, 高爱花, 智勤功, 李鹏.  稠油油藏蒸汽吞吐井长效防砂技术, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2014.03.017
    [18] 曲瑛新, 严小锋.  江桥杜66区块浅薄层稠油油藏热水驱注采参数优化, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2013.06.018
    [19] 王海静, 薛世峰, 仝兴华.  射孔水平井产液剖面均衡性影响因素分析, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.01.016
    [20] 夏环宇, 翟应虎, 安岩, 崔永兴.  深水钻井隔水管增压排量对井筒温度分布的影响, 石油钻探技术. doi: 10.3969/j.issn.1001-0890.2012.01.007
  • 加载中
图(13)
计量
  • 文章访问数:  1347
  • HTML全文浏览量:  756
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-18
  • 修回日期:  2019-10-15
  • 网络出版日期:  2019-10-29
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回